Minim Invasive Neurosurg 2008; 51(2): 67-71
DOI: 10.1055/s-2007-1004558
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Intraoperative Diffusion-Weighted Imaging for Visualization of the Pyramidal Tracts. Part II: Clinical Study of Usefulness and Efficacy

N. Ozawa 1 , 4 , Y. Muragaki 1 , 2 , R. Nakamura 1 , 3 , H. lseki 1 , 2 , 3
  • 1Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
  • 2Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
  • 3International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women's Medical University, Tokyo, Japan
  • 4MRI System division, Hitachi Medical Corporation, Chiba, Japan
Further Information

Publication History

Publication Date:
09 April 2008 (online)

Abstract

Precise identification and preservation of the pyramidal tract during surgery for parenchymal brain tumors is of crucial importance for the avoidance of postoperative deterioration of the motor function. The technique of intraoperative diffusion-weighted imaging (iDWI) using an intraoperative MR scanner of low magnetic field strength (0.3 Tesla) has been developed. Its clinical usefulness and efficacy were evaluated in 10 surgically treated patients with gliomas (5 men and 5 women, mean age: 41.2±13.9 years). iDWI permitted visualization of the pyramidal tract on the non-affected side in all 10 cases, and on the affected side in 8 cases. Motion artifacts were observed in four patients, but were not an obstacle to identification of the pyramidal tract. Good correspondence of the anatomical landmarks localization on iDWI and T1-weighted imaging was found. All participating neurosurgeons agreed that, in the majority of cases, iDWI was very useful for localization of the pyramidal tract and for clarification of its spatial relationships with the tumor. In conclusion, image quality and accuracy of the iDWI obtained with an MR scanner of low magnetic field strength (0.3 Tesla) are sufficient for possible incorporation into an intraoperative neuronavigation system. The use of iDWI in addition to structural iMRl and subcortical functional mapping with electrical stimulation can potentially result in a reduction of the postoperative morbidity after aggressive surgical removal of lesions located in the vicinity to the motor white matter tracts.

References

  • 1 Woolsey CN, Erickson TC, Gilson WE. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation.  J Neurosurg. 1979;  51 476-506
  • 2 Yingling CD, Ojemann S, Dodson B, Harrington MJ, Berger MS. Identification of motor pathways during tumor surgery facilitated by multichannel electromyographic recording.  J Neurosurg. 1999;  91 922-927
  • 3 Stejskal EO, Tanner JE. Spin diffusion measurements: spin-echoes in the presence of a time-dependent field gradient.  J Chem Phys. 1965;  42 288-292
  • 4 Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.  Radiology. 1986;  161 401-407
  • 5 Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain.  Magn Reson Med. 1999;  42 526-540
  • 6 Krings T, Reinges MHT, Thiex R, Gilsbach JM, Thron A. Functional and diffusion-weighted magnetic resonance images of space-occupying lesions affecting the motor system: imaging the motor cortex and pyramidal tracts.  J Neurosurg. 2001;  95 816-824
  • 7 Kamada K, Houkin K, Iwasaki Y, Takeuchi F, Kuriki S, Mitsumori K, Sawamura Y. Rapid identification of the primary motor area by using magnetic resonance axonography.  J Neurosurg. 2002;  97 558-567
  • 8 Coenen VA, Krings T, Axer H, Weidemann J, Kranzlein H, Hans FJ, Thron A, Gilsbach JM, Rohde V. lntraoperative three-dimensional visualization of the pyramidal tract in a neuronavigation system (PTV) reliably predicts true position of principal motor pathways.  Surg Neurol. 2003;  60 381-390
  • 9 Berman JI, Berger MS, Mukherjee P, Henry RG. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas.  J Neurosurg. 2004;  101 66-72
  • 10 Kinoshita M, Yamada K, Hashimoto N, Kato A, Izumoto S, Baba T, Maruno M, Nishimura T, Yoshimine T. Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation.  Neuroimage. 2005;  25 424-429
  • 11 Dorward NL, Alberti O, Velani B, Gerritsen FA, Harkness WF, Kitchen ND, Thomas DG. Postimaging brain distortion: Magnitude, correlates, and impact on neuronavigation.  J Neurosurg. 1998;  88 656-662
  • 12 Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi  Jr  RS, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells  III  WM, Kikinis R, Jolesz FA. Serial intraoperative magnetic resonance imaging of brain shift.  Neurosurgery. 2001;  48 787-798
  • 13 Ozawa N, Muragaki Y, Shirakawa H, Suzukawa K, Nakamura R, Watanabe S, Iseki H, Takakura K. Development of navigation system employing intraoperative diffusion weighted imaging using open MRI. In: Lemke HU, Vannier MW, Inamura K, Farman AG, Doi K, Reiber JHC (eds). Computer assisted radiology and surgery: Proceedings of the 18th International Congress and Exhibition. Amsterdam: Elsevier 2004: 697-702
  • 14 Ozawa N, Muragaki Y, Shirakawa H, Suzukawa H, Nakamura R, Iseki H. Navigation system based on intraoperative diffusion weighted imaging using open MRI. In: Lemke HU, Inamura K, Doi K, Vannier MW, Farman AG (eds). Computer assisted radiology and surgery: Proceedings of the 19th International Congress and Exhibition. Amsterdam: Elsevier 2005: 810-814
  • 15 Ozawa N, Muragaki Y, Nakamura R, Iseki H. Intraoperative diffusion-weighted imaging for visualization of the pyramidal tracts. Part I: pre-clinical validation of the scanning protocol.  Minim Invas Neurosurg. 2008;  51 63-66
  • 16 Muragaki Y, Iseki H, Maruyama T, Kawamata T, Yamane F, Nakamura R, Kubo O, Takakura K, Hori T. Usefulness of intraoperative magnetic resonance imaging for glioma surgery.  Acta Neurochir Suppl. 2006;  98 67-75
  • 17 Sugiura M, Muragaki Y, Nakamura R, Hori T, Iseki H. Accuracy evaluation of an update-navigation system for the resection surgery of brain tumor using intraoperative magnetic resonance imaging.  J JSCAS. 2005;  7 43-49 , (article in Japanese)
  • 18 Jiang H, Golay X, Zijl PC van, Mori S. Origin and minimization of residual motion-related artifacts in navigator-corrected segmented diffusion-weighted EPI of the human brain.  Magn Reson Med. 2002;  47 818-822
  • 19 Field AS, Alexander AL, Wu YC, Hasan KM, Witwer B, Badie B. Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor.  J Magn Reson Imaging. 2004;  20 555-562
  • 20 Ozawa N, Muragaki Y, Suzukawa H, Nakamura R, Iseki H. Pyramidal tract navigation based on intraoperative diffusion-weighted imaging; sound navigation using the fiber tract margin (abstract).  Int J Comput Assist Radiol Surg. 2006;  1 ((Suppl 1)) 488
  • 21 Ozawa N, Muragaki Y, Shirakawa H, Suzukawa H, Nakamura R, Iseki H. Pyramidal tract navigation based on diffusion weighted imaging updated by intraoperative open MRI (abstract). In: Proceedings of the 13th Annual Meeting of ISMRM, Miami. 2005 abstract 2155

Correspondence

Prof. H. lsekiMD, PhD 

Faculty of Advanced Techno-Surgery

Institute of Advanced Biomedical Engineering and Science

Graduate School of Medicine

Tokyo Women's Medical University

8-1 Kawada-cho

Shinjuku-ku

162-8666 Tokyo

Japan

Phone: +81/3/3353 81 11(ext 39989)

Fax: +81/3/5361 77 96

Email: hiseki@abmes.twmu.ac.jp