Abstract
The existence of inherited aggressive forms of medullary thyroid carcinoma (MTC) and
their resistance to classical therapies make it a prime candidate for adoptive immunotherapy.
Highly potent antigen-presenting cells, namely dendritic cells (DCs), may serve as
an interesting tool for anticancer vaccination. Here we report on the in vitro findings of a vaccination trial in five MTC patients, who were treated with a new
DC generation protocol consisting of granulocyte-macrophage colony-stimulating factor
and interferon-α (IFN-DCs). These cells were pulsed with tumor-specific calcitonin
and administered twice. In two patients who responded to therapy we found a large
increase (in mean 2.9±1.9%) of antigen-specific IFN-γ-secreting CD4+ cells as well
as an increase of granzyme B positive CD8+ cells (mean 2.2±0.2%) in the peripheral
blood. In parallel, a decrease of CD4+/CD25+/FoxP3+ regulatory T cells was seen. Importantly,
in vitro stimulation of PBMC with 10 different 15mer calcitonin peptides resulted in the identification
of two HLA class II epitope regions within the central part of full-length calcitonin.
These data were in accordance with the results drawn from the computer-based algorithm
epitope prediction software SYFPEITHI. Measurement of different pro- and anti-angiogenic
factors did not allow for a distinct outcome of prediction of the treated patients.
In summary, we have demonstrated that immunization with IFN-DCs leads to a tumor epitope-specific
immune response in MTC patients and may, therefore, represent a promising tool for
future vaccination trials.
Key words
dendritic cells - interferon-α - immunotherapy - medullary thyroid carcinoma - calcitonin
- epitopes
References
1
Kebebew E, Greenspan FS, Clark OH, Woeber KA, Grunwell J.
Extent of disease and practice patterns for medullary thyroid cancer.
J Am Coll Surg.
2005;
200
890-896
2
Tisell LE, Hansson G, Jansson S.
Surgical treatment of medullary carcinoma of the thyroid.
Horm Metab Res.
1989;
21
((Suppl))
29-31
3
Kebebew E, Ituarte PH, Siperstein AE, Duh QY, Clark OH.
Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors,
and a comparison of staging systems.
Cancer.
2000;
88
1139-1148
4
Schuler G, Schuler-Thurner B, Steinman RM.
The use of dendritic cells in cancer immunotherapy.
Curr Opin Immunol.
2003;
15
138-147
5
Schott M, Seissler J.
Dendritic cell vaccination: new hope for the treatment of metastasized endocrine malignancies.
Trends Endocrinol Metab.
2003;
14
156-162
6
Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A,
Feuerstein B, Fritsch PO, Romani N, Schuler G.
Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients
by vaccination with mature, cryopreserved, peptide- loaded monocyte-derived dendritic
cells.
J Exp Med.
2002;
195
1279-1288
7
Nestle FO, Conrad C.
Dendritic cell therapy for skin cancer.
Vox Sang.
2004;
87
((Suppl 2))
112-114
8
Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, Taidi B, Rajapaksa R,
Caspar CB, Okada CY, Beckhoven A van, Liles TM, Engleman EG, Levy R.
Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune
responses in 35 patients.
Blood.
2002;
99
1517-1526
9
Jacobs B, Wuttke M, Papewalis C, Seissler J, Schott M.
Dendritic cell subtypes and in vitro generation cells.
Horm Metab Res.
2008;
40
99-107
10
Sallusto F, Lanzavecchia A.
Efficient presentation of soluble antigen by cultured human dendritic cells is maintained
by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated
by tumor necrosis factor alpha.
J Exp Med.
1994;
179
1109-1118
11
Sorg RV, Ozcan Z, Brefort T, Fischer J, Ackermann R, Muller M, Wernet P.
Clinical-scale generation of dendritic cells in a closed system.
J Immunother (1997).
2003;
26
374-383
12
Caux C, Vanbervliet B, Massacrier C, Ait-Yahia S, Vaure C, Chemin K, Dieu-Nosjean
And MC, Vicari A.
Regulation of dendritic cell recruitment by chemokines.
Transplantation.
2002;
73
S7-S11
13
Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO,
Steinman RM, Schuler G.
Proliferating dendritic cell progenitors in human blood.
J Exp Med.
1994;
180
83-93
14
Schott M, Seissler J, Lettmann M, Fouxon V, Scherbaum WA, Feldkamp J.
Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination.
J Clin Endocrinol Metab.
2001;
86
4965-4969
15
Schott M, Feldkamp J, Klucken M, Kobbe G, Scherbaum WA, Seissler J.
Calcitonin-specific antitumor immunity in medullary thyroid carcinoma following dendritic
cell vaccination.
Cancer Immunol Immunother.
2002;
51
663-668
16
Bachleitner-Hofmann T, Stift A, Friedl J, Pfragner R, Radelbauer K, Dubsky P, Schuller G,
Benko T, Niederle B, Brostjan C, Jakesz R, Gnant M.
Stimulation of autologous antitumor T-cell responses against medullary thyroid carcinoma
using tumor lysate-pulsed dendritic cells.
J Clin Endocrinol Metab.
2002;
87
1098-1104
17
Stift A, Sachet M, Yagubian R, Bittermann C, Dubsky P, Brostjan C, Pfragner R, Niederle B,
Jakesz R, Gnant M, Friedl J.
Dendritic cell vaccination in medullary thyroid carcinoma.
Clin Cancer Res.
2004;
10
2944-2953
18
Jacobs B, Wuttke M, Papewalis C, Fenk R, Stüssgen C, Baehring T, Schinner S, Raffel A,
Seissler J, Schott M.
Characterization of monocyte-derived IFN-generated dendritic cells.
Horm Metab Res.
2008;
40
117-121
19
Parlato S, Santini SM, Lapenta C, Di Pucchio T, Logozzi M, Spada M, Giammarioli AM,
Malorni W, Fais S, Belardelli F.
Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived
dendritic cells: importance for the rapid acquisition of potent migratory and functional
activities.
Blood.
2001;
98
3022-3029
20
Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T, Belardelli F.
Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development
and activity in vitro and in Hu-PBL-SCID mice.
J Exp Med.
2000;
191
1777-1788
21
Pavel ME, Hassler G, Baum U, Hahn EG, Lohmann T, Schuppan D.
Circulating levels of angiogenic cytokines can predict tumour progression and prognosis
in neuroendocrine carcinomas.
Clin Endocrinol (Oxf).
2005;
62
434-443
22
Zhao H, Grossman HB, Delclos GL, Hwang LY, Troisi CL, Chamberlain RM, Chenoweth MA,
Zhang H, Spitz MR, Wu X.
Increased plasma levels of angiogenin and the risk of bladder carcinoma: from initiation
to recurrence.
Cancer.
2005;
104
30-35
23
Brostjan C, Bayer A, Zommer A, Gornikiewicz A, Roka S, Benko T, Yaghubian R, Jakesz R,
Steger G, Gnant M, Friedl J, Stift A.
Monitoring of circulating angiogenic factors in dendritic cell-based cancer immunotherapy.
Cancer.
2003;
98
2291-2301
24
Malinowski K, Pullis C, Raisbeck AP, Rapaport FT.
Modulation of human lymphocyte marker expression by gamma irradiation and mitomycin
C.
Cell Immunol.
1992;
143
368-377
25
Papewalis C, Jacobs B, Wuttke M, Ullrich E, Fenk R, Willenberg H, Schinner S, Cohnen M,
Seissler J, Scherbaum WA, Schott M.
IFN-alpha Skews Monocyte into CD56+ expressing Dendritic Cells with Potent Functional
Activities in vitro and in vivo.
J Immunol.
2008;
180
1462-1470
26
Carmeliet P.
Angiogenesis in health and disease.
Nat Med.
2003;
9
653-660
27
Carmeliet P.
Manipulating angiogenesis in medicine.
J Intern Med.
2004;
255
538-561
28
Kimura K, Kawamura T, Kadotani S, Inada H, Niihira S, Yamano T.
Peptide-specific cytotoxicity of T lymphocytes against glutamic acid decarboxylase
and insulin in type 1 diabetes mellitus.
Diabetes Res Clin Pract.
2001;
51
173-179
29
Ma Z, Westermark P, Westermark GT.
Amyloid in human islets of Langerhans: immunologic evidence that islet amyloid polypeptide
is modified in amyloidogenesis.
Pancreas.
2000;
21
212-218
30
Betea D, Bradwell AR, Harvey TC, Mead GP, Schmidt-Gayk H, Ghaye B, Daly AF, Beckers A.
Hormonal and biochemical normalization and tumor shrinkage induced by anti-parathyroid
hormone immunotherapy in a patient with metastatic parathyroid carcinoma.
J Clin Endocrinol Metab.
2004;
89
3413-3420
31
Bradwell AR, Harvey TC.
Control of hypercalcaemia of parathyroid carcinoma by immunisation.
Lancet.
1999;
353
370-373
32
Zhang R, DeGroot LJ.
A monoclonal antibody against rat calcitonin inhibits the growth of a rat medullary
thyroid carcinoma cell line in vitro.
Endocrinology.
1997;
138
1697-1703
33
Zhang R, Scherberg N, DeGroot LJ.
Monoclonal antibodies to rat calcitonin: their use in antigenic mapping and immunohistochemistry.
Endocrinology.
1997;
138
1691-1696
34
Neumann F, Wagner C, Preuss KD, Kubuschok B, Schormann C, Stevanovic S, Pfreundschuh M.
Identification of an epitope derived from the cancer testis antigen HOM-TES-14/SCP1
and presented by dendritic cells to circulating CD4+ T cells.
Blood.
2005;
106
3105-3113
35
Rohn TA, Reitz A, Paschen A, Nguyen XD, Schadendorf D, Vogt AB, Kropshofer H.
A novel strategy for the discovery of MHC class II-restricted tumor antigens: identification
of a melanotransferrin helper T-cell epitope.
Cancer Res.
2005;
65
10068-10078
36
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M.
Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor
alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various
autoimmune diseases.
J Immunol.
1995;
155
1151-1164
37
Casares N, Arribillaga L, Sarobe P, Dotor J, Lopez-Diaz DC, Melero I, Prieto J, Borras-Cuesta F,
Lasarte JJ.
CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent
antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide
vaccination.
J Immunol.
2003;
171
5931-5939
38
Trzonkowski P, Szmit E, Mysliwska J, Dobyszuk A, Mysliwski A.
CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes
in the direct cell-to-cell interaction.
Clin Immunol.
2004;
112
258-267
39
Larmonier N, Marron M, Zeng Y, Cantrell J, Romanoski A, Sepassi M, Thompson S, Chen X,
Andreansky S, Katsanis E.
Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function
involves TGF-beta and IL-10.
Cancer Immunol Immunother.
2007;
56
48-59
40
Romagnani C, Della CM, Kohler S, Moewes B, Radbruch A, Moretta L, Moretta A, Thiel A.
Activation of human NK cells by plasmacytoid dendritic cells and its modulation by
CD4+ T helper cells and CD4+ CD25hi T regulatory cells.
Eur J Immunol.
2005;
35
2452-2458
41
Lim HW, Hillsamer P, Banham AH, Kim CH.
Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells.
J Immunol.
2005;
175
4180-4183
42
Somasundaram R, Jacob L, Swoboda R, Caputo L, Song H, Basak S, Monos D, Peritt D,
Marincola F, Cai D, Birebent B, Bloome E, Kim J, Berencsi K, Mastrangelo M, Herlyn D.
Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory
T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta.
Cancer Res.
2002;
62
5267-5272
43
Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL.
A critical role for transforming growth factor-beta but not interleukin 4 in the suppression
of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells.
J Exp Med.
1996;
183
2669-2674
44
Jarnicki AG, Lysaght J, Todryk S, Mills KH.
Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating
the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+
regulatory T cells.
J Immunol.
2006;
177
896-904
45
Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H.
Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating
lymphocytes in patients with gastric and esophageal cancers.
Clin Cancer Res.
2003;
9
4404-4408
46
Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A.
CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible
involvement of regulatory T cells in disease progression.
Cancer.
2003;
98
1089-1099
47
Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH.
Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small
cell lung cancer and late-stage ovarian cancer.
Cancer Res.
2001;
61
4766-4772
48
Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, Kaiser LR, June CH.
Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous
T cell proliferation.
J Immunol.
2002;
168
4272-4276
49
Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, Classen S, Schultze JL.
In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients
with multiple myeloma.
Blood.
2006;
107
((3))
940-949
50
Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E, Knolle PA, Thomas RK, Bergwelt-Baildon M,
Debey S, Hallek M, Schultze JL.
Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients
with chronic lymphocytic leukemia after therapy with fludarabine.
Blood.
2005;
106
2018-2025
51
Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN.
Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory
T cells.
J Exp Med.
2004;
200
771-782
52
Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ.
Regulatory T cells in ovarian cancer: biology and therapeutic potential.
Am J Reprod Immunol.
2005;
54
369-377
53
Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA.
CD4+CD25high regulatory cells in human peripheral blood.
J Immunol.
2001;
167
1245-1253
54
Kabelitz D, Wesch D, Oberg HH.
Regulation of regulatory T cells: role of dendritic cells and toll-like receptors.
Crit Rev Immunol.
2006;
26
291-306
55
Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J.
Vascular-specific growth factors and blood vessel formation.
Nature.
2000;
407
242-248
56
Matsumoto S, Yamada Y, Narikiyo M, Ueno M, Tamaki H, Miki K, Wakatsuki K, Enomoto K,
Yokotani T, Nakajima Y.
Prognostic significance of platelet-derived growth factor-BB expression in human esophageal
squamous cell carcinomas.
Anticancer Res.
2007;
27
2409-2414
57
Poon RT, Fan ST, Wong J.
Clinical implications of circulating angiogenic factors in cancer patients.
J Clin Oncol.
2001;
19
1207-1225
58
Noel A, Maillard C, Rocks N, Jost M, Chabottaux V, Sounni NE, Maquoi E, Cataldo D,
Foidart JM.
Membrane associated proteases and their inÂhibitors in tumour angiogenesis.
J Clin Pathol.
2004;
57
577-584
59
Cataldo DD, Gueders MM, Rocks N, Sounni NE, Evrard B, Bartsch P, Louis R, Noel A,
Foidart JM.
Pathogenic role of matrix metalloproteases and their inhibitors in asthma and chronic
obstructive pulmonary disease and therapeutic relevance of matrix metalloproteases
inhibitors.
Cell Mol Biol (Noisy -le-grand).
2003;
49
875-884
60
Sounni NE, Janssen M, Foidart JM, Noel A.
Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis.
Matrix Biol.
2003;
22
55-61
61
Kugler A.
Matrix metalloproteinases and their inhibitors.
Anticancer Res.
1999;
19
1589-1592
62
Vasala K, Paakko P, Turpeenniemi-Hujanen T.
Matrix metalloproteinase-2 immunoreactive protein as a prognostic marker in bladder
cancer.
Urology.
2003;
62
952-957
63
Pesta M, Topolcan O, Holubec Jr L, Rupert K, Cerna M, Holubec LS, Treska V, Finek J,
Cerny R.
Clinicopathological assessment and quantitative estimation of the matrix metalloproteinases
MMP-2 and MMP-7 and the inhibitors TIMP-1 and TIMP-2 in colorectal carcinoma tissue
samples.
Anticancer Res.
2007;
27
1863-1867
64
Jinga DC, Blidaru A, Condrea I, Ardeleanu C, Dragomir C, Szegli G, Stefanescu M, Matache C.
MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: correlations
with prognostic factors.
J Cell Mol Med.
2006;
10
499-510
65
Tetu B, Brisson J, Wang CS, Lapointe H, Beaudry G, Blanchette C, Trudel D.
The influence of MMP-14, TIMP-2 and MMP-2 expression on breast cancer prognosis.
Breast Cancer Res.
2006;
8
R28
66
Kuvaja P, Talvensaari-Mattila A, Paakko P, Turpeenniemi-Hujanen T.
The absence of immunoreactivity for tissue inhibitor of metalloproteinase-1 (TIMP-1),
but not for TIMP-2, protein is associated with a favorable prognosis in aggressive
breast carcinoma.
Oncology.
2005;
68
196-203
67
Moran A, Iniesta P, Garcia-Aranda C, Juan C De, Diaz-Lopez A, Sanchez-Pernaute A,
Torres AJ, Diaz-Rubio E, Balibrea JL, Benito M.
Clinical relevance of MMP-9, MMP-2, TIMP-1 and TIMP-2 in colorectal cancer.
Oncol Rep.
2005;
13
115-120
68
Zhong H, Bowen JP.
Antiangiogenesis drug design: multiple pathways targeting tumor vasculature.
Curr Med Chem.
2006;
13
849-862
69
Ramanujan S, Koenig GC, Padera TP, Stoll BR, Jain RK.
Local imbalance of proangiogenic and antiangiogenic factors: a potential mechanism
of focal necrosis and dormancy in tumors.
Cancer Res.
2000;
60
1442-1448
70
Almeida MQ, Latronico AC.
The molecular pathogenesis of childhood adrenocortical tumors.
Horm Metab Res.
2007;
39
461-466
71
Pavel ME, Hoppe S, Papadopoulos T, Linder V, Mohr B, Hahn EG, Lohmann T, Schuppan D.
Adrenomedullin is a novel marker of tumor progression in neuroendocrine carcinomas.
Horm Metab Res.
2006;
38
112-118
72
Stratakis CA.
Adrenocortical tumors, primary pigmented adrenocortical disease (PPNAD)/Carney complex,
and other bilateral hyperplasias: the NIH studies.
Horm Metab Res.
2007;
39
467-473
Correspondence
M. SchottMD
Department of Endocrinology
Diabetes and Rheumatology
University Hospital Duesseldorf
Moorenstr.5
40225 Duesseldorf
Germany
Phone: +49/211/811 78 10
Fax: +49/211/811 78 60
Email: schottmt@uni-duesseldorf.de