Zusammenfassung
Ein intaktes retinales Pigmentepithel (RPE) ist für die Funktion der darüber liegenden neurosensorischen Netzhaut eine zentrale Voraussetzung. In der postmitotischen einlagigen Zellschicht des RPE sind unterschiedlichste Funktionen, wie z. B. Abbau der Photorezeptoraußensegmente, Vitamin-A-Stoffwechsel, Unterstützung des retinalen Metabolismus und Aufrechterhaltung der äußeren Blut-Retina-Schranke vereinigt. Bedingt durch die Belastungen einer hohen Stoffwechselrate, hoher okularer Sauerstoffspiegel, Exposition mit energiereichem kurzwelligem Licht und einer damit verbundenen Bildung von freien Sauerstoffradikalen ist das RPE auf effektive Schutzsysteme angewiesen. Trotz hochdifferenzierter Abwehrmechanismen gegenüber diesem Stress kommt es im Rahmen der Alterung zu einem kumulativen Schaden im RPE, der letztlich als eine wesentliche Teilkomponente in der Pathogenese der altersabhängigen Makuladegeneration zu sehen ist. Das bessere Verständnis dieser Vorgänge wird zur Entwicklung neuer prophylaktischer Ansätze beitragen, die in einer ständig älter werdenden Gesellschaft dringend gebraucht werden.
Abstract
An intact retinal pigment epithelium (RPE) represents an essential condition for the visual process. This post-mitotic RPE monolayer combines different functions such as degradation of photoreceptor outer segments, vitamin A cycle, support of retinal metabolism and maintenance of the outer blood-retina barrier. As a consequence of excessive metabolism, high oxygen levels, exposition to light of short wave length and ensuing radical formation, the RPE is highly dependent on protective systems. In spite of differentiated defence mechanisms, aging processes cause cumulative RPE damage, representing a major component of age-related macular degeneration (AMD), the leading cause of irreversible severe vision loss in people over 50 years old. A better understanding of the underlying pathophysiology will help to develop new prophylactic options which is becoming more and more important with increasing life expectancy.
Schlüsselwörter
RPE - Lysosomen - AMD - Lipofuszin - Radikale
Key words
retinal pigment epithelium (RPE) - lysosomes - age-related macular degeneration (AMD) - lipofuscin - radicals
Literatur
1
Age-Related Eye Disease Study Research Group .
A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8.
Arch Ophthalmol.
2001;
119
1417-1436
2
Alves-Rodrigues A, Shao A.
The science behind lutein.
Toxicol Lett.
2004;
150
57-83
3
Anderson D H, Mullins R F, Hageman G S. et al .
A role for local inflammation in the formation of drusen in the aging eye.
Am J Ophthalmol.
2002;
134
411-431
4
Barouch F C, Miller J W.
The role of inflammation and infection in age-related macular degeneration.
Int Ophthalmol Clin.
2007;
47
185-197
5
Bazan N G.
Survival signaling in retinal pigment epithelial cells in response to oxidative stress: significance in retinal degenerations.
Adv Exp Med Biol.
2006;
572
531-540
6
Beatty S, Koh H, Phil M. et al .
The role of oxidative stress in the pathogenesis of age-related macular degeneration.
Surv Ophthalmol.
2000;
45
115-134
7
Bergmann M, Schutt F, Holz F G. et al .
Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A 2-E may contribute to the pathogenesis of age-related macular degeneration.
FASEB J.
2004;
18
562-564
8
Birch E E, Castañeda Y S, Wheaton D H. et al .
Visual maturation of term infants fed long-chain polyunsaturated fatty acid-supplemented or control formula for 12 mo.
Am J Clin Nutr.
2005;
81
871-879
9
Bok D.
Evidence for an inflammatory process in age-related macular degeneration gains new support.
Proc Natl Acad Sci U S A.
2005;
102
7053-7054
10
Boulton M, Dayhaw-Barker P.
The role of the retinal pigment epithelium: topographical variation and ageing changes.
Eye.
2001;
15
384-389
11
Cangemi F E.
TOZAL Study: an open case control study of an oral antioxidant and omega-3 supplement for dry AMD.
BMC Ophthalmol.
2007;
26 (7)
3
12
Chen Y, Houghton L A, Brenna J T. et al .
Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal.
J Biol Chem.
1996;
271
20 507-20 515
13
Choi J S, Kim D, Hong Y M. et al .
Inhibition of nNOS and COX-2 expression by lutein in acute retinal ischemia.
Nutrition.
2006;
22
668-671
14
Chua B, Flood V, Rochtchina E. et al .
Dietary fatty acids and the 5-year incidence of age-related maculopathy.
Arch Ophthalmol.
2006;
124
981-986
15
Coleman H, Chew E.
Nutritional supplementation in age-related macular degeneration.
Curr Opin Ophthalmol.
2007;
18
220-223
16
Elner V M.
Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.
Trans Am Ophthalmol Soc.
2002;
100
301-338
17
Esparza-Gordillo J, Soria J M, Buil A. et al .
Genetic and environmental factors influencing the human factor H plasma levels.
Immunogenetics.
2004;
56
77-82
18
Evans J R.
Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration.
Cochrane Database Syst Rev.
2006;
2
CD000254
19
Frank R N, Amin R H, Puklin J E.
Antioxidant enzymes in the macular retinal pigment epithelium of eyes with neovascular age-related macular degeneration.
Am J Ophthalmol.
1999;
127
694-709
20
Globus M Y, Busto R, Lin B. et al .
Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation.
J Neurochem.
1995;
65
1250-1256
21 Holz F G, Pauleikhoff D, Spaide R F. et al .Altersabhängige Makuladegeneration. Springer-Verlag 2004
22
Holz F G, Schutt F, Kopitz J. et al .
Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin.
Invest Ophthalmol Vis Sci.
1999;
40
737-743
23
Howes K A, Liu Y, Dunaief J L. et al .
Receptor for advanced glyciation end products and age-related macular degeneration.
Invest Ophthalmol Vis Sci.
2004;
45
3713-3720
24
Hunt S.
Increased dietary intake of omega-3-PUFA reduces pathological retinal angiogenesis.
Ophthalmologe.
2007;
104
727-729
25
Ishibashi T, Murata T, Hangai M. et al .
Advanced glycation end products in age-related macular degeneration.
Arch Ophthalmol.
1998;
116
1629-1632
26
Jang Y P, Zhou J, Nakanishi K. et al .
Anthocyanins protect against A 2E photooxidation and membrane permeabilization in retinal pigment epithelial cells.
Photochem Photobiol.
2005;
81
529-536
27
Jin X H, Ohgami K, Shiratori K. et al .
Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats.
Invest Ophthalmol Vis Sci.
2006;
47
2562-2568
28
Johnson E J, Schaefer E J.
Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration.
Am J Clin Nutr.
2006;
83
1494S-1498S
29
Kaemmerer E, Schutt F, Krohne T U. et al .
Effects of lipid peroxidation-related protein modifications on RPE lysosomal functions and POS phagocytosis.
Invest Ophthalmol Vis Sci.
2007;
48
1342-1347
30
Kim S R, Nakanishi K, Itagaki Y. et al .
Photooxidation of A 2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin.
Exp Eye Res.
2006;
82
828-839
31
Kopitz J, Holz F G, Kaemmerer E. et al .
Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration.
Biochimie.
2004;
86
825-31
32
Krajčovičová-Kudláčková M, Valachovičová M, Pauková V. et al .
Effects of diet and age on oxidative damage products in healthy subjects.
Physiol Res.
2007; [Epub ahead of print];
33
Lamb L E, Simon J D.
A2E: a component of ocular lipofuscin.
Photochem Photobiol.
2004;
79
127-136
34
Lee E H, Faulhaber D, Hanson K M. et al .
Dietary lutein reduces ultraviolet radiation-induced inflammation and immunosuppression.
J Invest Dermatol.
2004;
122
510-517
35
Maeda A, Crabb J W, Palczewski K.
Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: protection against oxidative stress and a potential role in aging.
Biochemistry.
2005;
44
480-489
36
Maitra I, Marcocci L, Droy-Lefaix M T. et al .
Peroxyl radical scavenging activity of Ginkgo biloba extract EGb 761.
Biochem Pharmacol.
1995;
49
1649-1655
37
Milbury P E, Graf B, Curran-Celentano J M. et al .
Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells.
Invest Ophthalmol Vis Sci.
2007;
48
2343-2349
38
Miyauchi O, Mizota A, Adachi-Usami E. et al .
Protective effect of docosahexaenoic acid against retinal ischemic injury: an electroretinographic study.
Ophthalmic Res.
2001;
33
191-195
39
Nolan J M, Stack J, O’Donovan O. et al .
Risk factors for age-related maculopathy are associated with a relative lack of macular pigment.
Exp Eye Res.
2007;
84
61-74
40
Ohta Y, Okubo T, Niwa T. et al .
Prolonged marginal ascorbic acid deficiency induces oxidative stress in retina of guinea pigs.
Int J Vitam Nutr Res.
2002;
72
63-70
41
Parisi V, Tedeschi M, Gallinaro G. et al .
CARMIS Study Group: Carotenoids and Antioxidants in Age-Related Maculopathy Italian Study Multifocal Electroretinogram Modifications after 1 Year.
Ophthalmology.
2007; [Epub ahead of print];
42
Rafi M M, Shafaie Y.
Dietary lutein modulates inducible nitric oxide synthase (iNOS) gene and protein expression in mouse macrophage cells (RAW 264.7).
Mol Nutr Food Res.
2007;
51
333-340
43
Ranchon I, Gorrand J M, Cluzel J. et al .
Functional protection of photoreceptors from light-induced damage by dimethylthiourea and Ginkgo biloba extract.
Invest Ophthalmol Vis Sci.
1999;
40
1191-1199
44
Richer S, Stiles W, Statkute L. et al .
Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial).
Optometry.
2004;
75
216-230
45
Roh Y J, Moon C, Kim S Y. et al .
Glutathione depletion induces differential apoptosis in cells of mouse retina, in vivo.
Neurosci Lett.
2007;
417
266-270
46
Rotstein N P, Politi L E, German O L. et al .
Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors.
Invest Ophthalmol Vis Sci.
2003;
44
2252-2259
47
SanGiovanni J P, Chew E Y.
The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina.
Prog Retin Eye Res.
2005;
24
87-138
48
Scholl H P, Weber B H, Nöthen M M. et al .
Y402 H polymorphism in complement factor H and age-related macula degeneration (AMD).
Ophthalmologe.
2005;
102
1029-1035
49
Schutt F, Bergmann M, Holz F G. et al .
Isolation of intact lysosomes from human RPE cells and effects of A 2-E on the integrity of the lysosomal and other cellular membranes.
Graefes Arch Clin Exp Ophthalmol.
2002;
240
983-988
50
Schutt F, Bergmann M, Holz F G. et al .
Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium.
Invest Ophthalmol Vis Sci.
2003;
44
3663-3668
51
Schutt F, Bergmann M, Holz F G. et al .
Accumulation of A 2-E in mitochondrial membranes of cultured RPE cells.
Graefes Arch Clin Exp Ophthalmol.
2007;
245
391-398
52
Schutt F, Davies S, Kopitz J. et al .
Photodamage to human RPE cells by A 2-E, a retinoid component of lipofuscin.
Invest Ophthalmol Vis Sci.
2000;
41
2303-2308
53
Schutt F, Ueberle B, Schnolzer M. et al .
Proteome analysis of lipofuscin in human retinal pigment epithelial cells.
FEBS Lett.
2002;
528
217-221
54
Schutt F, Völcker H E, Dithmar S.
N-Acetylcystein verbessert die lysosomale Funktion und beschleunigt den Abbau von Photorezeptoraußensegmenten in der RPE-Zellkultur.
Klin Monatsbl Augenheilkd.
2007;
224
580-584
55
Shamsi F A, Chaudhry I A, Boulton M E. et al .
L-carnitine protects human retinal pigment epithelial cells from oxidative damage.
Curr Eye Res.
2007;
32
575-584
56
Skerka C, Lauer N, Weinberger A A. et al .
Defective complement control of factor H (Y402 H) and FHL-1 in age-related macular degeneration.
Mol Immunol.
2007;
44
3398-3406
57
Sparrow J R, Cai B.
Blue light-induced apoptosis of A 2E-containing RPE: involvement of caspase-3 and protection by Bcl-2.
Invest Ophthalmol Vis Sci.
2001;
42
1356-1362
58
Stahl W.
Macular carotenoids: lutein and zeaxanthin.
Dev Ophthalmol.
2005;
38
70-88
59
Strauss O.
The retinal pigment epithelium in visual function.
Physiol Rev.
2005;
85
845-881
60
Sundelin S P, Nilsson S E.
Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants.
Free Radic Biol Med.
2001;
31
217-225
61
Tanito M, Yoshida Y, Kaidzu S. et al .
Acceleration of age-related changes in the retina in alpha-tocopherol transfer protein null mice fed a Vitamin E-deficient diet.
Invest Ophthalmol Vis Sci.
2007;
48
396-404
62
Trieschmann M, Beatty S, Nolan J M. et al .
Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: the LUNA study.
Exp Eye Res.
2007;
84
718-728
63
Leeuwen van R, Boekhoorn S, Vingerling J R. et al .
Dietary intake of antioxidants and risk of age-related macular degeneration.
JAMA.
2005;
294
3101-3107
64
Wang H, Nair M G, Strasburg G M. et al .
Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries.
J Nat Prod.
1999;
62
294-296
65
Whitehead A J, Mares J A, Danis R P.
Macular pigment: a review of current knowledge.
Arch Ophthalmol.
2006;
124
1038-1045
66
Xie Z, Wu X, Gong Y. et al .
Intraperitoneal injection of Ginkgo biloba extract enhances antioxidation ability of retina and protects photoreceptors after light-induced retinal damage in rats.
Curr Eye Res.
2007;
32
471-479
67
Yavin E.
Versatile roles of docosahexaenoic acid in the prenatal brain: from pro- and anti-oxidant features to regulation of gene expression.
Prostaglandins Leukot Essent Fatty Acids.
2006;
75
203-211
68
Zhou J, Cai B, Jang Y P. et al .
Mechanisms for the induction of HNE- MDA- and AGE-adducts, RAGE and VEGF in retinal pigment epithelial cells.
Exp Eye Res.
2005;
80
567-580
69
Zhou J, Jang Y P, Kim S R. et al .
Complement activation by photooxidation products of A 2E, a lipofuscin constituent of the retinal pigment epithelium.
Proc Natl Acad Sci U S A.
2006;
103
16 182-16 187
Prof. Dr. Florian Schütt
Universitäts-Augenklinik Heidelberg
INF 400
69120 Heidelberg
Phone: ++ 49/62 21/56 69 99
Fax: ++ 49/62 21/56 54 22
Email: florian_schuett@med.uni-heidelberg.de