Abstract
Databases are needed for the ozone (O3 ) risk assessment on adult forest trees under stand conditions, as mostly juvenile trees have been studied in chamber experiments. A synopsis is presented here from an integrated case study which was conducted on adult Fagus sylvatica trees at a Central-European forest site. Employed was a novel free-air canopy O3 fumigation methodology which ensured a whole-plant assessment of O3 sensitivity of the about 30 m tall and 60 years old trees, comparing responses to an experimental 2 × ambient O3 regime (2 × O3 , max. 150 nl O3 l-1 ) with those to the unchanged 1 × ambient O3 regime (1 × O3 = control) prevailing at the site. Additional experimentation on individual branches and juvenile beech trees exposed within the forest canopy allowed for evaluating the representativeness of young-tree and branch-bag approaches relative to the O3 sensitivity of the adult trees. The 2 × O3 regime did not substantially weaken the carbon sink strength of the adult beech trees, given the absence of a statistically significant decline in annual stem growth; a 3 % reduction across five years was demonstrated, however, through modelling upon parameterization with the elaborated database. 2 × O3 did induce a number of statistically significant tree responses at the cell and leaf level, although the O3 responsiveness varied between years. Shade leaves displayed an O3 sensitivity similar to that of sun leaves, while indirect belowground O3 effects, apparently mediated through hormonal relationships, were reflected by stimulated fine-root and ectomycorrhizal development. Juvenile trees were not reliable surrogates of adult ones in view of O3 risk assessment. Branch sections enclosed in (climatized) cuvettes, however, turned out to represent the O3 sensitivity of entire tree crowns. Drought-induced stomatal closure decoupled O3 intake from O3 exposure, as in addition, also the “physiologically effective O3 dose” was subject to change. No evidence emerged for a need to lower the “Critical Level for Ozone” in risk assessment of forest trees, although sensitive tree parameters did not necessarily reflect a linear relationship to O3 stress. Exposure-based concepts tended to overestimate O3 risk under drought, which is in support of current efforts to establish flux-related concepts of O3 intake in risk assessment.
Key words
Ozone flux - dose - exposure - adult Fagus sylvatica trees - ontogeny - free-air fumigation - canopy - scaling - modelling.
References
1
Alexou M., Hofer N., Liu X., Rennenberg H., Haberer K..
Significance of ozone exposure for inter-annual differences in primary metabolites of old-growth beech (Fagus sylvatica L.) and Norway spruce (Picea abies L.) trees in a mixed forest stand.
Plant Biology.
(2007);
9
227-241
2
Andersen C. P..
Source-sink balance and carbon allocation below ground in plants exposed to ozone.
New Phytologist.
(2003);
157
213-228
3
Ashmore M. R..
Assessing the future global impacts of ozone on vegetation.
Plant, Cell and Environment.
(2005);
28
949-964
4
Ashmore M., Emberson L., Karlsson P‐E., Pleijel H..
New directions: A new generation of ozone critical levels for the protection of vegetation in Europe.
Atmospheric Environment.
(2004);
38
2213-2214
5 Baldocchi D. D.. Scaling water vapor and carbon dioxide exchange from leaves to a canopy: rules and tools. Ehleringer, J. R. and Field, C. B., eds. Scaling Physiological Processes, Leaf to Globe. San Diego; Academic Press (1993): 77-114
6
Baumgarten M., Werner H., Häberle K.‐H., Emberson L. D., Fabian P., Matyssek R..
Seasonal ozone response of mature beech trees (Fagus sylvatica) growing at high altitude in the Bavarian Forest (Germany) in comparison with young beech trees grown in the field and in phytotrons.
Environmental Pollution.
(2000);
109
431-442
7
Bennett J. P., Rassat P., Berrang P., Karnosky D. F..
Relationships between leaf anatomy and ozone sensitivity of Fraxinus pennsylvanica Marsh. and Prunus serotina Ehrh.
Environmental and Experimental Botany.
(1992);
32
33-41
8
Black V. J., Black C. R., Roberts J. A., Stewart C. A..
Impact of ozone on the reproductive development of plants.
New Phytologist.
(2000);
147
421-447
9
Blumenröther M. C., Löw M., Matyssek R., Oßwald W..
Flux-based response of sucrose and starch in leaves of adult beech trees (Fagus sylvatica L.) under chronic free-air O3 fumigation.
Plant Biology.
(2007);
9
207-214
10 Bortier K., Ceulemans R., de Temmerman L.. Effects of tropospheric ozone on woody plants. Agrawal, S. B. and Agrawal, M., eds. Environmental Pollution and Plant Responses. New York, Boca Raton; Lewis Publishers (2000): 153-182
11 Bytnerowicz A., Arbaugh M. J., Alonso R.. Ozone air pollution in the Sierra Nevada: distribution and effects on forests. Krupa, S. V., ed. Developments in Environmental Science, Vol. 2. Amsterdam; Elsevier (2003): 402
12
Bytnerowicz A., Godzik B., Grodzinska K., Frączek W., Musselman R., Manning W., Badea O., Popescu F., Fleischer P..
Ambient ozone in forests of the Central and Eastern European mountains.
Environmental Pollution.
(2004);
130
5-16
13 Chappelka A. H., Chevone B. I.. Tree response to ozone. Lefohn, A. S., ed. Surface Level Ozone Exposures and Their Effects On Vegetation. Chelsea, MI; Lewis (1992): 271-324
14
Chappelka A. H., Samuelson L. J..
Ambient ozone effects on forest trees of the eastern United States: a review.
New Phytologist.
(1998);
139
91-108
15
Ciais P., Reichstein M., Viovy N., Granier A., Ogée J., Allard V., Aubinet M., Buchmann N., Bernhofer C., Carrara A., Chevallier F., De Noblet N., Friend A. D., Friedlingstein P., Grünwald T., Heinesch B., Keronen P., Knohl A., Krinner G., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J. M., Papale D., Pilegaard K., Rambal S., Seufert G., Soussana J. F., Sanz M. J., Schulze E. D., Vesala T., Valentini R..
Europe-wide reduction in primary productivity caused by the heat and drought in 2003.
Nature.
(2005);
437
529-534
16
Deckmyn G., Op de Beeck M., Löw M., Then C., Verbeeck H., Wipfler P., Ceulemans R..
Modelling ozone effects on adult beech trees through simulation of defence, damage, and repair costs: implementation of the CASIROZ ozone model in the ANAFORE forest model.
Plant Biology.
(2007);
9
320-330
17
Dizengremel P..
Effects of ozone on the carbon metabolism of forest trees.
Plant Physiology Biochemestry.
(2001);
39
729-742
18
Drogoudi P. D., Ashmore M. R..
Does elevated ozone have differing effects in flowering and deblossomed strawberry?.
New Phytologist.
(2000);
147
561-569
19
Einig W., Lauxmann U., Hauch B., Hampp R., Landolt W., Maurer S., Matyssek R..
Ozone-induced accumulation of carbohydrates changes enzyme activities of carbohydrate metabolism in birch leaves.
New Phytologist.
(1997);
137
673-680
20 Ellenberg H.. Vegetation Mitteleuropas mit den Alpen, 5. ed. Stuttgart; Ulmer Verlag (1996)
21
Evans L. S., Miller P. R..
Comparative needle anatomy and relative ozone sensitivity of four pine species.
Canadian Journal of Botany.
(1972);
50
1067-1071
22
Ferdinand J. A., Fredericksen K. B., Kouterick K. B., Skelly J. M..
Leaf morphology and ozone sensitivity of two open pollinated genotypes of black cherry (Prunus serotina) trees.
Environmental Pollution.
(2000);
108
297-302
23
Fowler D., Cape J. N., Coyle M., Flechard C., Kuylenstienra J., Hicks K., Derwent D., Johnson C., Stevenson D..
The global exposure of forests to air pollutants.
Water, Air, and Soil Pollution.
(1999);
116
5-32
24
Fredericksen T. S., Joyce B. J., Skelly J. M., Steiner K. C., Kolb T. E., Kouterick K. B., Savage J. E., Snyder K. R..
Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees.
Environmental Pollution.
(1995);
89
273-283
25
Fredericksen T. S., Skelly J. M., Steiner K. C., Kolb T. E., Kouterick K.B..
Size-mediated foliar response to ozone in black cherry trees.
Environmental Pollution.
(1996);
91
53-63
26
Frey B., Scheidegger C., Günthardt-Goerg M. S., Matyssek R..
The effects of ozone and nutrient supply on stomatal response in birch (Betula pendula) leaves as determined by digital image-analysis and X‐ray microanalysis.
New Phytologist.
(1996);
132
135-143
27
Fuhrer J., Skärby L., Ashmore M. R..
Critical levels for ozone effects on vegetation in Europe.
Environmental Pollution.
(1997);
97
91-106
28
Gessler A., Rennenberg H., Kopriva S..
Regulation of nitrate uptake on the whole plant level: interaction between nitrogen compounds, cytokinins and carbon metabolism.
Tree Physiology.
(2004);
24
1313-1321
29
Giles J..
Hikes in surface ozone could suffocate crops.
Nature.
(2005);
435
7
30
Grams T. E. E., Kozovits A. R., Reiter I. M., Winkler J. B., Sommerkorn M., Blaschke H., Häberle K.‐H., Matyssek R..
Quantifying competitiveness in woody plants.
Plant Biology.
(2002);
4
153-158
31
Grebenc T., Kraigher H..
Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration.
Plant Biology.
(2007);
9
279-287
32
Grulke N. E., Miller P. R..
Changes in gas exchange characteristics during the life span of giant sequoia - implications for response to current and future concentrations of atmospheric ozone.
Tree Physiology.
(1994);
14
659-668
33
Grulke N. E., Retzlaff W. A..
Changes in physiological attributes of ponderosa pine from seedling to mature tree.
Tree Physiology.
(2001);
21
275-286
34
Günthardt-Goerg M. S., Matyssek R., Scheidegger C., Keller T..
Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentration.
Trees.
(1993);
7
104-114
35
Günthardt-Goerg M. S., McQuattie C. J., Scheidegger C., Rhiner C., Matyssek R..
Ozone-induced cytochemical and ultrastructural changes in leaf mesophyll cell walls.
Canadian Journal of Forest Research.
(1997);
27
453-463
36
Haagen-Smit A. J., Darley E. F., Zaitlin M., Hull H., Nobel W. M..
Investigation of injury to plants from air pollution in the Los Angeles area.
Plant Physiology.
(1952);
27
18-34
37
Haberer K., Herbinger K., Alexou M., Tausz M., Rennenberg H..
Antioxidative defence of old growth beech (Fagus sylvatica) under double ambient O3 concentrations in a free-air exposure system.
Plant Biology.
(2007 a);
9
215-226
38
Haberer K., Grebenc T., Alexou M., Gessler A., Kraigher H., Rennenberg H..
Effects of long-term free-air ozone fumigation on δ15 N and total N in Fagus sylvatica and associated mycorrhizal fungi.
Plant Biology.
(2007 b);
9
242-252
39 Häberle K. H., Reiter I. M., Nunn A. J., Gruppe A., Simon U., Gossner M., Werner H., Leuchner M., Heerdt C., Fabian P., Matyssek R.. KROCO, Freising, Germany: Canopy research in a temperate mixed forest of Southern Germany. Basset, Y., Horlyck, V., and Wright, S. J., eds. Studying Forest Canopies from Above: The International Canopy Crane Network. Oxford; Smithsonian Tropical Research Institute and UNEP (2003): 71-78
40
Hanson P. J., Samuelson L. J., Wullschleger S. D., Tabberer T. A., Edwards G. S..
Seasonal patterns of light-saturated photosynthesis and leaf conductance for mature and seedling Quercus rubra L. foliage: differential sensitivity to ozone exposure.
Tree Physiology.
(1994);
14
1351-1366
41
Havranek W. M., Wieser G..
Design and testing of twig chambers for ozone fumigation and gas exchange measurements in mature trees.
Proceedings of the Royal Society of Edinburgh B.
(1994);
102
541-546
42
Henriksson J..
Differential shading of branches or whole trees: survival, growth, and reproduction.
Oecologia.
(2001);
126
482-486
43 Heath R. L., Taylor G. E.. Physiological processes and plant responses to ozone exposure. Sandermann, H., Wellburn, A. R., and Heath, R. L., eds. Forest Decline and Ozone, a Comparison of Controlled Chamber and Field Experiments , Ecological Studies 127,. Berlin; Springer-Verlag (1997): 317-368
44
Heath R. L..
Biochemical processes in an ecosystem: how should they be measured?.
Water, Air, and Soil Pollution.
(1999);
116
279-298
45 Hehn M.. Die geschichtliche Entwicklung des Buchen-Vorbaus in Deutschland. Kalkkuhl, R. and Schmidt, A., eds. Waldumbau von Nadelholzreinbeständen in Mischbestände durch Buchen-Voranbau und Buchen-Voraussaat, Vol. 13, Schriftreihe der Landesanstalt für Ökologie, Bodenordnung und Forsten, Landesamt für Agrarordnung Nordrhein-Westfalen, Münster. (1997): 7-16
46
Hendrey G. R., Lewin K. F., Kolb E. R. Z., Evans L. S..
Controlled enrichment system for experimental fumigation of plants in the field with sulfur dioxide.
Journal of the Air and Waste Management Association.
(1992);
42
1324-1327
47
Herbinger K., Then C., Löw M., Haberer K., Alexous M., Koch N., Remele K., Heerdt C., Grill D., Rennenberg H., Häberle K.‐H., Matyssek R., Tausz M., Wieser G..
Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure.
Environmental Pollution.
(2005);
137
476-482
48
Herbinger K., Then C., Haberer K., Alexou M., Löw M., Remele K., Rennenberg H., Matyssek R., Grill D., Wieser G., Tausz M..
Gas exchange and antioxidative compounds in young beech trees under free-air ozone exposure and comparisons to adult trees.
Plant Biology.
(2007);
9
288-297
49
Houpis J. L., Costella M. P., Cowles S..
A branch exposure chamber for fumigating ponderosa pine to atmospheric pollution.
Journal of Environmental Quality.
(1991);
20
467-474
50 Intergovernmental Panel on Climate Change .Third Assessment Report on Climate Change: Impact, Adaptation, and Vulnerability. Cambridge; University Press (2001)
51
Jehnes S., Betz G., Bahnweg G., Haberer K., Sandermann H., Rennenberg H..
Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European beech (Fagus sylvatica L.) trees.
Plant Biology.
(2007);
9
253-264
52
Kangasjärvi J., Jaspers P., Kollist H..
Signalling and cell death in ozone-exposed plants.
Plant, Cell and Environment.
(2005);
28
1021-1036
53
Karlsson P. E., Uddling J., Skärby L., Wallin G., Selldén G..
Impact of ozone on the growth of birch (Betula pendula) saplings.
Environmental Pollution.
(2003);
124
485-495
54 Karnosky D. F., Gielen B., Ceulemans R., Schlesinger W. H., Norby R. J., Oksanen E., Matyssek R., Hendrey G. R.. FACE systems for studying the impacts of greenhouse gases on Forest Ecosystems. Karnosky, D. F., Scarascia-Mugnozza, G., Ceulemans, R., and Innes, J. L., eds. The Impacts of Carbon Dioxide and Other Greenhouse Gases On Forest Ecosystems. Vienna; CABI Press (2001): 297-324
55
Karnosky D. F., Zak D., Pregnitzer K., Awmack C., Bockheim J., Dickson R., Hendrey G., Host G., King J., Kopper B., Kruger E., Kubiske M., Lindroth R., Mattson W., McDonald E., Noormets A., Oksanen E., Parsons W., Percy K., Podila G., Riemenschneider D., Sharma P., Thakur R., Sober A., Sober J., Jones W., Anttonen S., Vapaavuori E., Manskovska B., Heilman W., Isebrands J..
Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2 : a synthesis of molecular to ecosystem results from the Aspen FACE project.
Functional Ecology.
(2003);
17
289-304
56
Karnosky D. F., Pregitzer K. S., Zak D. R., Kubiske M. E., Hendrey G. R., Weinstein D., Nosal M., Percy K. E..
Scaling ozone responses of forest trees to the ecosystem level in a changing climate.
Plant, Cell and Environment.
(2005);
28
965-981
57
Karnosky D. F., Werner H., Holopainen T., Percy K., Oksanen T., Oksanen E., Heerdt C., Fabian P., Nagy J., Heilman W., Cox R., Nelson N., Matyssek R..
Free-air exposure systems to scale up ozone research to mature trees.
Plant Biology.
(2007);
9
181-190
58
Kelly J. M., Samuelson L., Edwards G., Hanson P., Kelting D., Mays A., Wullschleger S..
Are seedlings reasonable surrogates for trees? An analysis of ozone impacts on Quercus rubra.
.
Water, Air, and Soil Pollution.
(1995);
85
1317-1324
59
Kolb T. E., Matyssek R..
Limitations and perspectives about scaling ozone impact in trees.
Environmental Pollution.
(2001);
115
373-393
60
Kolb T. E., Fredericksen T. S., Steiner K. C., Skelly J. M..
Issues in scaling tree size and age responses to ozone: a review.
Environmental Pollution.
(1997);
98
195-208
61
Körner C., Asshoff R., Bignucola O., Hättenschwiler S., Keel S. G., Pelaez-Riedl S., Pepin S., Siegwolf R. T. W., Zotz G..
Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2 .
Science.
(2005);
309
1360-1362
62
Kozovits A. R., Matyssek R., Blaschke H., Göttlein A., Grams T. E. E..
Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons.
Global Chance Biology.
(2005 a);
11
1387-1401
63
Kozovits A. R., Matyssek R., Winkler B., Göttlein A., Blaschke H., Grams T. E. E..
Above-ground space sequestration determines competitive success in juvenile beech and spruce trees.
New Phytologist.
(2005 b);
167
181-196
64
Kubiske M. E., Quinn V. S., Marquardt P. E., Karnosky D. F..
Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen.
Plant Biology.
(2007);
9
342-355
65 Kyoto Protocol to the united nations framework convention on climate change (1997) FCCC/1997/Add. 1, Decision 1/CP3, Annex 7. (1997)
66
Landolt W., Günthardt-Goerg M. S., Pfenninger I., Einig W., Hampp R., Maurer S., Matyssek R..
Effect of fertilization on ozone-induced changes in the metabolism of birch leaves (Betula pendula) .
New Phytologist.
(1997);
137
389-397
67 Langebartels C., Ernst D., Heller W., Lütz C., Payer H.‐D., Sandermann Jr. H.. Ozone responses of trees: results from controlled chamber exposures at the GSF phytotron. Sandermann Jr., H., Wellburn, A. R., and Heath, R. L., eds Forest Decline and Ozone. Berlin, Heidelberg, New York; Springer (1997): 163-200
68 Lefohn A. S.. Surface Level Ozone Exposure and Their Effects On Vegetation. Chelsea; Lewis Publishers (1992): 366
69
Lewin K. F., Hendrey G. R., Nagy J., McMorte R. L..
Design and application of a free-air carbon dioxide enrichment facility.
Agricultural and Forest Meteorology.
(1994);
70
15-29
70
Lippert M., Steiner K., Payer H.‐D., Simons S., Langebartels C., Sandermann Jr. H..
Assessing the impact of ozone on photosynthesis of European beech (Fagus sylvatica L.) in environmental chambers.
Trees.
(1996);
10
268-275
71
Löw M., Herbinger K., Nunn A. J., Häberle K.‐H., Leuchner M., Heerdt C., Werner H., Wipfler P., Pretzsch H., Tausz M., Matyssek R..
Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica) .
Trees.
(2006);
20
539-548
72
Löw M., Häberle K.-H., Warren C. R., Matyssek R..
O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure.
Plant Biology.
(2007);
9
197-206
73
Lucas P. W., Wolfenden J..
The role of plant hormones as modifiers of sensitivity to air pollutants.
Phyton.
(1996);
36
51-56
74
Luedemann G., Matyssek R., Fleischmann F., Grams T. E. E..
Ozone affects host/pathogen interactions and competitiveness for N in juvenile trees infested with Phytophthora citricola .
Plant Biology.
(2005);
7
640-649
75
Manning W. J., Godzik B..
Bioindicator plants for ambient ozone in Central and Eastern Europe.
Environmental Pollution.
(2004);
130
33-40
76
Manning W. J., v. Tiedemann A..
Climate change: potential effects of increase atmospheric carbon dioxide (CO2 ), ozone (O3 ), and ultraviolet-B (UV‐B) radiation on plant diseases.
Environmental Pollution.
(1995);
88
219-225
77
Massmann W. J., Musselmann R. C., Lefohn A. S..
A conceptual ozone dose-response model to develop a standard to protect vegetation.
Atmospheric Environment.
(2000);
34
745-759
78
Matyssek R..
How sensitive is birch to ozone? Responses in structure and function.
Journal of Forest Science.
(2001);
47
8-20
79
Matyssek R., Innes J. L..
Ozone - a risk factor for trees and forests in Europe?.
Water, Air, and Soil Pollution.
(1999);
116
199-226
80 Matyssek R., Sandermann H.. Impact of Ozone on Trees: An Ecophysiological Perspective. Progress in Botany 64. Heidelberg; Springer Verlag (2003): 349-404
81
Matyssek R., Günthardt-Goerg M. S., Keller T., Schneidegger C..
Impairment of gas exchange and structure in birch leaves (Betula pendula) caused by low ozone concentrations.
Trees.
(1991);
5
5-13
82
Matyssek R., Günthardt-Goerg M. S., Saurer M., Keller T..
Seasonal growth, δ13 C in leaves and stem, and phloem structure of birch (Betula pendula) under low ozone concentrations.
Trees.
(1992);
6
69-76
83 Matyssek R., Reich P. B., Oren R., Winner W. E.. Response mechanisms of conifers to air pollutants. Smith, W. K. and Hinckley, T. H., eds. Physiological Ecology of Coniferous Forests. Physiological Ecology Series, New York; Academic Press (1995 a): 255-308
84
Matyssek R., Günthardt-Goerg M. S., Maurer S., Keller T..
Nighttime exposure to ozone reduces whole-plant production in Betula pendula .
Tree Physiology.
(1995 b);
15
159-165
85 Matyssek R., Havranek W. M., Wieser G., Innes J. L.. Ozone and the forests in Austria and Switzerland. Sandermann Jr., H., Wellburn, A. R., and Heath, R. L., eds. Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments , Ecological Studies 127,. Berlin; Springer-Verlag (1997): 95-134
86
Matyssek R., Schnyder H., Elstner E.-F., Munch J.‐C., Pretzsch H., Sandermann H..
Growth and parasite defence in plants: the balance between resource sequestration and retention.
Plant Biology.
(2002);
4
133-136
87
Matyssek R., Wieser G., Nunn A. J., Kozovits A. R., Reiter I. M., Heerdt C., Winkler J. B., Baumgarten M., Häberle K‐H., Grams T. E. E., Werner H., Fabian P., Havranek W. M..
Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions.
Atmospheric Environment.
(2004);
38
2271-2281
88
Matyssek R., Agerer R., Ernst D., Munch J.‐C., Osswald W., Pretzsch H., Priesack E., Schnyder H., Treutter D..
The plant's capacity in regulating resource demand.
Plant Biology.
(2005);
7
560-580
89
Matyssek R., Le Thiec D., Löw M., Dizengremel P., Nunn A. J., Häberle K.‐H..
Interaction between drought and O3 stress in forest trees.
Plant Biology.
(2006 c);
8
11-17
90
Matyssek R., Bytnerowicz A., Karlsson P. E., Paoletti E., Sanz M., Schaub M., Wieser G..
Promoting the O3 flux concept for European Forest trees.
Environmental Pollution.
(2006 a);
91 Matyssek R., Wieser G., Nunn A. J., Löw M., Then C., Herbinger K., Blumenröther M., Jehnes S., Reiter I. M., Heerdt C., Koch N., Häberle K.‐H., Haberer K., Werner H., Tausz M., Fabian P., Rennenberg H., Grill D., Oßwald W.. How sensitive are forest trees to ozone - new research on an old issue. Omasa, K., Nouchi, I., and De Kok, L. J., eds. Plant Responses to Air Pollution and Global Change. Tokyo; Springer-Verlag (2006 b): 21-28
92
Maurer S., Matyssek R..
Nutrition and the ozone sensitivity of birch (Betula pendula) . II. Carbon balance, water-use efficiency and nutritional status of the whole plant.
Trees.
(1997);
12
11-20
93
McKendry I. G., Lundgren J..
Tropospheric layering of ozone in regions of urbanised complex and/or coastal terrain - a review.
Progress in Physical Geography.
(2000);
24
359-384
94
McLeod A. R., Shaw P. J. A., Holland M. R..
The Liphook forest fumigation project: studies of sulphur dioxide and ozone effects on coniferous trees.
Forest Ecology and Management.
(1992);
51
121-127
95 Medical Dictionary. Weinheim; Wileys Publishers (2003): 456
96
Menser H. A..
Response of plants to air pollutants. III. A relation between ascorbic acid levels and ozone susceptibility of light-preconditioned tobacco plants.
Plant Physiology.
(1964);
39
564-567
97
Middleton J. T., Kendrick Jr. J. B., Schwalm H. W..
Injury to herbaceous plants by smog or air pollution.
Plant Disease Reporter.
(1950);
34
245-252
98 Miller P. R., McBride J. M.. Oxidant air pollution impacts in the montane forest of southern California, Ecological Studies 134. Berlin, Heidelberg, New York; Springer (1999): 317-336
99
Möller D..
The tropospheric ozone problem.
Arhiv za Higijenu Rada i Toksikologiju.
(2004);
55
11-23
100 Musselman R. C., Hale B. A.. Methods for controlled and field ozone exposures of forest tree species in North America. Sandermann Jr., H., Wellburn, A. R., and Heath, R. L., eds. Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments , Ecological Studies 127,. Berlin, Heidelberg, New York; Springer (1997): 277-315
101
Musselman R. C., Lefohn A. S., Massman W. J., Heath R. L..
A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects.
Atmospheric Environment.
(2006);
40
1869-1888
102
Nunn A. J., Reiter I. M., Häberle K.‐H., Werner H., Langebartels C., Sandermann H., Heerdt C., Fabian P., Matyssek R..
“Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech.
Phyton.
(2002);
42
105-119
103
Nunn A. J., Kozovits A. R., Reiter I. M., Heerdt C., Leuchner M., Lütz C., Liu X., Winkler J. B., Grams T. E. E., Häberle K.‐H., Werner H., Fabian P., Rennenberg H., Matyssek R..
Comparison of ozone uptake and responsiveness between a phytotron study with young and a field experiment with adult beech (Fagus sylvatica) .
Environmental Pollution.
(2005 b);
137
494-506
104
Nunn A. J., Reiter I. M., Häberle K.‐H., Langebartels C., Bahnweg G., Pretzsch H., Sandermann H., Matyssek R..
Response pattern in adult forest trees to chronic ozone stress: identification of variations and consistencies.
Environmental Pollution.
(2005 a);
136
365-369
105
Nunn A. J., Anegg S., Betz G., Simons S., Kalisch G., Seidlitz H. K., Grams T. E. E., Häberle K. H., Matyssek R., Bahnweg G., Sandermann H., Langebartels C..
Role of ethylene in the regulation of cell death and leaf loss in ozone-exposed European beech.
Plant, Cell and Environment.
(2005 c);
28
886-897
106
Nunn A. J., Wieser G., Reiter I. M., Häberle K.‐H., Grote R., Havranek W. M., Matyssek R..
Testing the “unifying theory” for O3 sensitivity with mature forest tree responses (Fagus sylvatica and Picea abies).
.
Tree Physiology.
(2006 a);
26
1391-1403
107
Nunn A. J., Wieser G., Metzger U., Löw M., Wipfler P., Häberle K.‐H., Matyssek R..
Whole-plant ozone uptake in adult forest trees: comparison between contrasting moisture conditions and altitudes.
Environmental Pollution.
(2006 b);
108
Oksanen E. J..
Increasing tropospheric ozone level reduced birch (Betula pendula) dry mass within a five year period.
Water, Air, and Soil Pollution.
(2001);
130
947-952
109
Oksanen E., Kontunen-Soppela S., Riikonen J., Peltonen P., Uddling J., Vapaavuori E..
Northern environment predisposes birches to ozone damage.
Plant Biology.
(2007);
9
191-196
110
Op de Beeck M., Löw M., Verbeeck H., Deckmyn G..
Suitability of a combined stomatal conductance and photosynthesis model for calculation of leaf-level ozone fluxes.
Plant Biology.
(2007);
9
331-341
111 Otto H.-J.. Waldökologie. Stuttgart; UTB-Ulmer (1994): 391
112
Pääkkönen E., Vahala J., Holopainen T., Karjalainen R., Kärenlampi L..
Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch (Betula pendula) saplings exposed to low concentrations of ozone.
Tree Physiology.
(1996);
16
597-605
113
Pääkkönen E., Holopainen T., Karenlämpi R., Karenlämpi L..
Ageing-related anatomical and ultrastructural changes in leaves of birch (Betula pendula Roth.) clones as affected by low ozone exposure.
Annals of Botany.
(1995);
75
285-294
114
Panek J. A., Kurpius M. R., Goldstein A. H..
An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem.
Environmental Pollution.
(2002);
117
93-100
115
Paoletti E., Grulke N. E..
Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses.
Environmental Pollution.
(2005);
137
483-493
116
Pell E. J., Temple P. J., Friend A. L., Mooney H. A., Winner W. E..
Compensation as a plant response to ozone and associated stresses: an analysis of ROPIS experiments.
Journal of Environmental Quality.
(1994);
23
429-436
117
Pell E. J., Schlagnhaufer C. D., Arteca R. N..
Ozone-induced oxidative stress: mechanisms of action and reaction.
Physiologia Plantarum.
(1997);
100
264-273
118 Polle A., Matyssek R., Günthardt-Goerg M. S., Maurer S.. Defense strategies against ozone in trees: the role of nutrition. Agrawal, S. B. and Agrawal, M., eds. Environmental Pollution and Plant Responses. New York, Boca Raton; Lewis Publishers (2000): 223-245
119
Pretzsch H., Kahn M., Grote R..
Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches „Wachstum oder Parasitenabwehr?“ im Kranzberger Forst.
Forstwissenschaftliches Centralblatt.
(1998);
117
241-257
120
Rao M. V., Davis K. R..
The physiology of ozone induced cell death.
Planta.
(2001);
213
682-690
121
Reich P. B..
Quantifying plant response to ozone: a unifying theory.
Tree Physiology.
(1987);
3
63-91
122
Reiter I. M., Häberle K.‐H., Nunn A. J., Heerdt C., Reitmayer H., Grote R., Matyssek R..
Competitive strategies in adult beech and spruce: space-related foliar carbon investment verus carbon gain.
Oecologia.
(2005);
146
337-349
123
Rennenberg H., Herschbach C., Polle A..
Consequences of air pollution on shoot-root interaction.
Journal of Plant Physiology.
(1996);
148
296-301
124
Samuelson L. J., Edwards G. S..
A comparison of sensitivity to ozone in seedlings and trees of Quercus rubra L.
New Phytologist,.
(1993);
125
373-379
125
Samuelson L. J., Kelly J. M., Mays P. A., Edwards G. S..
Growth and nutrition of Quercus rubra seedlings and mature trees after three seasons of ozone exposure.
Environmental Pollution.
(1996);
91
317-320
126
Sandermann Jr. H..
Ozone and plant health.
Annual Review of Phytopathology.
(1996);
34
347-366
127 Sandermann H., Matyssek R.. Scaling up from molecular to ecological processes. Sandermann, H., ed. Molecular Ecotoxicology of Plants , Ecological Studies 170,. Berlin; Springer Verlag (2004): 207-226
129 Sandermann Jr. H., Wellburn A. R., Heath R. L.. Forest decline and ozone: a comparison of controlled chamber and field experiments, Ecological Studies 127. Berlin, Heidelberg, New York; Springer (1997 a): 1-400
128 Sandermann Jr. H., Wellburn A. R., Heath R. L.. Forest decline and ozone: synopsis. Sandermann Jr., H., Wellburn, A. R., and Heath, R. L., eds. Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments , Ecological Studies 127,. Berlin, Heidelberg, New York; Springer (1997 b): 369-377
130
Sasek T. W., Richardson C. J..
Effects of chronic doses of ozone on loblolly pine: photosynthetic characteristics in the third growing season.
Forest Science.
(1989);
35
745-755
131
Saurer M., Maurer S., Matyssek R., Landolt W., Günthardt-Georg M. S., Siegenthaler U..
The influence of ozone and nutrition on δ13 C in Betula pendula .
Oecologia.
(1995);
103
397-406
132 Schulze E.‐D.. Plant life forms and their carbon, water, and nutrient relations. Lange, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H., eds. Physiological Plant Ecology, Vol. II , Encyclopedia of Plant Physiology 12B,. Berlin; Springer Verlag (1982): 615-676
133 Schulze E.‐D., Küppers M., Matyssek R.. The role of carbon balance and branching pattern in the growth of woody species. Givnish, T. J., ed. On the Economics of Plant Form and Function. Cambridge; Cambridge University Press (1986): 585-602
134 Schulze E.‐D., Lange O. L., Oren R.. Forest decline and air pollution - a case study of spruce (Picea abies) on acid soils, Ecological Studies 77. Berlin; Springer-Verlag (1989): 475
135
Schupp R., Rennenberg H..
Diurnal changes in the glutathione content of spruce needles (Picea abies L.).
Plant Science.
(1988);
57
113-117
136
Schwinning S..
Decomposition analysis of competitive symmetry and size structure dynamics.
Annals of Botany.
(1996);
77
47-57
137
Simpson D., Tuovinen J.-P., Emberson L., Ashmore M. R..
Characteristics of an ozone deposition module II: sensitivity analysis.
Water, Air, and Soil Pollution.
(2003);
143
123-137
138
Skärby L., Troeng E., Boström C..
Ozone uptake and effects on transpiration, net photosynthesis and dark respiration in Scots pine.
Forest Science.
(1987);
33
801-808
139
Spence D. R., Rykiel E. J., Sharpe P. J. H..
Ozone alters carbon allocation in loblolly pine assessment with carbon-11 labeling.
Environmental Pollution.
(1990);
64
93-106
140
Sprugel D. G., Hinckley T. M., Schaap W..
The theory and practice of branch autonomy.
Annual Review of Ecology and Systematics.
(1991);
22
309-334
141
Tausz M., Grulke N. E., Wieser G..
Defence and avoidance of ozone under global change.
Environmental Pollution.
(2006);
142
Taylor Jr. G. E., Hanson P. J..
Forest trees and tropospheric ozone: role of canopy deposition and leaf uptake in developing exposure-response relationships.
Agriculture, Ecosystems and Environment.
(1992);
42
255-273
143 Then C., Wieser G., Heerdt C., Herbinger K., Gigele T., Lohner H.. Diagnostics in beech exposed to chronic free air O3 fumigation. 2. Comparison between young and adult trees at the branch and tree level. Kinnunen, H. and Huttunen, S., eds. Proceedings IUFRO Meting Forests under Changing Climate, Enhanced UV and Air Pollution , Oulu, Finland, 25 - 30 August 2004, University of Oulu,. (2004): 143-150
144
Then C., Herbinger K., Blumenröther M., Haberer K., Heerdt C., Oßwald W., Rennenberg H., Grill D., Tausz M., Wieser G..
Evidence that branch cuvettes are reasonable surrogates for estimating O3 effects in entire tree crowns.
Plant Biology.
(2007);
9
309-319
145
Tjoelker M. G., Volin J. C., Oleksyn J., Reich P. B..
Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment.
Plant, Cell and Environment.
(1995);
18
895-905
146
Tuovinen J.-P., Simpson D., Mikkelsen T. N., Emberson L. D., Ashmore M. R., Aurela M., Cambridge H. M., Hovmand M. F., Jensen N. O., Laurila T., Pilegaard K., Ro-Poulsen H..
Comparisons of measured and modeled ozone deposition to forests in Northern Europe.
Water, Air, and Soil Pollution Focus.
(2001);
1
263-274
147
Uddling J., Günthardt-Goerg M. S., Matyssek R., Oksanen E., Pleijel H., Sellden G., Karlsson P. E..
Biomass reduction of juvenile birch is more strongly related to stomatal uptake of ozone than to indices based on external exposure.
Atmospheric Environment.
(2004);
38
4709-4719
148 UNECE .Mapping Manual 2004 UNECE. Convention on long range transboundary air pollution. Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Geneva; UNECE (2004): 251
149
Van der Heyden D., Skelly J., Innes J., Hug C., Zhang J., Landolt W., Bleuler P..
Ozone exposure thresholds and foliar injury on forest plants in Switzerland.
Environmental Pollution.
(2001);
111
321-331
150
Vingarzan R..
A review of surface O3 background levels and trends.
Atmospheric Environment.
(2004);
38
3431-3442
151
Volin J. C., Tjoelker M. G., Oleksyn J., Reich P. B..
Light environment alters response to ozone stress in Acer saccharum Marsh. and hybrid Populus L. seedlings. II. Diagnostic gas exchange and leaf chemistry.
New Phytologist.
(1993);
124
637-646
152
Wellburn F. A. M., Lau K.‐K., Milling M. K., Wellburn A. R..
Drought and air pollution affect nitrogen cycling and free-radical scavenging in Pinus halepensis Mill.
Journal of Experimental Botany.
(1996);
47
1361-1367
153
Werner H., Fabian P..
Free-air fumigation of mature trees.
Environmental Science and Pollution Research.
(2002);
9
117-121
154 Wieser G., Tausz M.. Critical levels for ozone: further applying and developing the flux-based concept. A UNECE workshop report, BFW Wien. (2006)
155
Wieser G., Havranek W. M..
Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure.
Trees.
(1993);
7
227-232
156
Wieser G., Havranek W. M..
Environmental control of ozone uptake in Larix decidua Mill.: a comparison between different altitudes.
Tree Physiology.
(1995);
15
253-258
157
Wieser G., Häsler R., Götz B., Koch W., Havranek W. M..
Role of climate, crown position, tree age and altitude in calculated ozone flux into needles of Picea abies and Pinus cembra : a synthesis.
Environmental Pollution.
(2000);
110
415-422
158
Wieser G., Tegischer K., Tausz M., Häberle K.‐H., Grams T. E. E., Matyssek R..
Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense.
Tree Physiology.
(2002 b);
22
583-590
159
Wieser G., Hecke K., Tausz M., Häberle K.‐H., Grams T. E. E., Matyssek R..
The role of antioxidative defense in determining ozone sensitivity of Norway spruce (Picea abies [L.] Karst.) across tree age: implications for the sun and shade crown.
Phyton.
(2002 a);
42
245-253
160
Wieser G., Hecke K., Tausz M., Häberle K.‐H., Grams T. E. E., Matyssek R..
The influence of microclimate and tree age on the defense capacity of European beech (Fagus sylvatica L.) against oxidative stress.
Annals of Forest Science.
(2003);
60
131-135
161 Wieser G.. Exchange of trace gases at the tree - atmosphere interface: ozone. Gasche, R., Papen, H., and Rennenberg, H., eds. Trace Gas Exchange in Forest Ecosystems. Dordrecht; Kluwer Academic Publishers (2002): 211-226
162
Winwood J., Pate A. E., Price A. J., Hanke D. E..
Effects of long-term, free-air ozone fumigation on the cytokinin content of mature beech trees.
Plant Biology.
(2007);
9
265-278
163
Wipfler P., Seifert T., Heerdt C., Werner H., Pretzsch H..
Growth of adult Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation.
Plant Biology.
(2005);
7
611-618
164
Wulff A., Hänninen O., Tuomainen A., Kärenlampi L..
A method for open-air exposure of plants to ozone.
Annales Botanici Fennici.
(1992);
29
253-262
165
Železnik P., Hrenko M., Then C., Koch N., Grebenc T., Levanič T., Kraigher H..
CASIROZ: root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes.
Plant Biology.
(2007);
9
298-308
R. Matyssek
Ecophysiology of Plants Department of Ecology Technische Universität München
Am Hochanger 13
85354 Freising
Germany
eMail: matyssek@wzw.tum.de
Editor: J. T. M. Elzenga