Abstract
Accurate prediction of plant-generated volatile isoprenoid fluxes is necessary for reliable estimation of atmospheric ozone and aerosol formation potentials. In recent years, significant progress has been made in understanding the environmental and physiological controls on isoprenoid emission and in scaling these emissions to canopy and landscape levels. We summarize recent developments and compare different approaches for simulating volatile isoprenoid emission and scaling up to whole forest canopies with complex architecture. We show that the current developments in modeling volatile isoprenoid emissions are “split-ended” with simultaneous but separated efforts in fine-tuning the empirical emission algorithms and in constructing process-based models. In modeling volatile isoprenoid emissions, simplified leaf-level emission algorithms (Guenther algorithms) are highly successful, particularly after scaling these models up to whole regions, where the influences of different ecosystem types, ontogenetic stages, and variations in environmental conditions on emission rates and dynamics partly cancel out. However, recent experimental evidence indicates important environmental effects yet unconsidered and emphasize, the importance of a highly dynamic plant acclimation in space and time. This suggests that current parameterizations are unlikely to hold in a globally changing and dynamic environment. Therefore, long-term predictions using empirical algorithms are not necessarily reliable. We show that process-based models have large potential to capture the influence of changing environmental conditions, in particular if the leaf models are linked with physiologically based whole-plant models. This combination is also promising in considering the possible feedback impacts of emissions on plant physiological status such as mitigation of thermal and oxidative stresses by volatile isoprenoids. It might be further worth while to incorporate main features of these approaches in regional empirically-based emission estimations thereby merging the “split ends”.
Key words
BVOC emission - isoprenoids - modeling - scaling - spatial variability - temporal variability
References
1
Affek H. P., Yakir D..
Protection by isoprene against singlet oxygen in leaves.
Plant Physiology.
(2002);
129
269-277
2
Arneth A., Niinemets Ü., Pressley S., Bäck J., Hari P., Karl T., Noe S., Prentice I. C., Serca D., Hickler T., Wolf A., Smith B..
Process-based estimates of terrestrial ecosystem isoprene emissions.
Atmospheric Chemistry and Physics Discussions.
(2006);
6
8011-8068
3
Bai J., Baker B., Liang B., Greenberg J., Guenther A..
Isoprene and monoterpene emissions from an Inner Mongolia grassland.
Atmospheric Environment.
(2006);
40
5753-5758
4
Baldocchi D. D., Fuentes J. D., Bowling D. R., Turnipseed A. A., Monson R. K..
Scaling isoprene fluxes from leaves to canopies: test cases over a boreal aspen and a mixed species temperate forest.
Journal of Applied Meteorology.
(1999);
38
885-898
5
Baldocchi D. D., Wilson K. B., Gu L..
How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest – an assessment with the biophysical model CANOAK.
Tree Physiology.
(2002);
22
1065-1077
6
Baraldi R., Rapparini F., Oechel W. C., Hastings S. J., Bryant P., Cheng Y., Miglietta F..
Monoterpene emission responses to elevated CO2 in a Mediterranean-type ecosystem.
New Phytologist.
(2004);
161
17-21
7
Bäck J., Hari P., Hakola H., Juurola E., Kulmala M..
Dynamics of monoterpene emissions in Pinus sylvestris during early spring.
Boreal Environmental Research.
(2005);
10
409-424
8
Bell M., Ellis J. E..
Sensitivity analysis of tropospheric ozone to modified biogenic emissions for the Mid-Atlantic region.
Atmospheric Environment.
(2004);
38
1879-1889
9
Bertin N., Staudt M..
Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees.
Oecologia.
(1996);
107
456-462
10
Bertin N., Staudt M., Hansen U., Seufert G., Ciccioli P., Foster P., Fugit J. L., Torres L..
Diurnal and seasonal course of monoterpene emissions from Quercus ilex (L.) under natural conditions – application of light and temperature algorithms.
Atmospheric Environment.
(1997);
31
135-144
11 Blande J. D., Tiiva P., Freiwald V., Oksanen E., Holopainen J. K.. The effects of herbivore damage and elevated ozone concentration on the volatile terpenoids produced by two hybrid aspen (Populus tremula × tremuloides) clones. Vienna, Austria, XVII International Botanical Congress, 17-7-2005. (2005): 544
12
Boissard C., Cao X. L., Juan C. Y., Hewitt C. N., Gallagher M..
Seasonal variations in VOC emission rates from gorse (Ulex europaeus) .
Atmospheric Environment.
(2001);
35
917-927
13
Bonn B., Lawrence M. G..
Influence of biogenic secondary organic aerosol formation approaches on atmospheric chemistry.
Journal of Atmospheric Chemistry.
(2005);
51
235-270
14
Brüggemann N., Schnitzler J.-P..
Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings.
Plant Biology.
(2002);
4
456-463
15
Buckley P. T..
Isoprene emissions from a Florida scrub oak species grown in ambient and elevated carbon dioxide.
Atmospheric Environment.
(2001);
35
631-634
16
Calogirou A., Larsen B. R., Brussol C., Duane M., Kotzias D..
Decomposition of terpenes by ozone during sampling on tenax.
Analytical Chemistry.
(1996);
68
1499-1506
17 Centritto M., Di Bella C., Baraldi R., Rapparini F., Beget M. E., Kemerer A., Loreto F., Rebella C.. Isoprenoid emissions from three Nothofagus species in Patagonia, Argentina. XVII International Botanical Congress, Vienna, Austria, 17-7-2005. (2005): 554
18
Centritto M., Nascetti P., Petrilli L., Raschi A., Loreto F..
Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO2 enrichment.
Plant, Cell and Environment.
(2004);
27
403-412
19
Ciccioli P., Brancaleoni E., Frattoni M., Marta S., Brachetti A., Vitullo M., Tirone G., Valentini R..
Relaxed eddy accumulation, a new technique for measuring emission and deposition fluxes of volatile organic compounds by capillary gas chromatography and mass spectrometry.
Journal of Chromatography A.
(2003);
985
283-296
20
Ciccioli P., Fabozzi C., Brancaleoni E., Cecinato A., Frattoni M., Cieslik S., Kotzias D., Seufert G., Foster P., Steinbrecher R..
Biogenic emission from the Mediterranean pseudosteppe ecosystem present in Castelporziano.
Atmospheric Environment.
(1997);
31
167-175
21
Collins W., Derwent R. G., Johnson C. E., Stevenson D. S..
The oxidation of organic compounds in the troposphere and their global warming potentials.
Climatic Change.
(2004);
52
453-479
22
Copolovici L. O., Filella I., Llusia J., Niinemets Ü., Peñuelas J..
The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex .
Plant Physiology.
(2005);
139
485-496
23
Copolovici L. O., Niinemets Ü..
Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.
Chemosphere.
(2005);
61
1390-1400
24
Cortinovis J., Solmon F., Serca D., Sarrat C., Rosset R..
A simple modeling approach to study the regional impact of a Mediterranean forest isoprene emission on anthropogenic plumes.
Atmospheric Chemistry and Physics.
(2005);
5
1915-1929
25
Dindorf T., Kuhn U., Ganzeveld L., Schebeske G., Ciccioli P., Holzke C., Köble R., Seufert G., Kesselmeier J..
Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget.
Journal of Geophysical Research.
(2006);
111
DOI: 10.1029/2005JD006751
26
Eisenreich W., Schwarz M., Cartayrade A., Arigoni D., Zenk M. H., Bacher A..
The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms.
Chemistry and Biology.
(1998);
5
221-233
27 Evans J. H., Farquhar G. D.. Modeling canopy photosynthesis from the biochemistry of the C3 chloroplast. Boote, K. J. and Loomis, R. S., eds. Modeling Crop Photosynthesis – From Biochemistry to Canopy. Madison, WI; Crop Science Society of America (1991): 1-15
28
Evans R. C., Tingey D. T., Gumpertz M. L..
Estimates of isoprene and monoterpene emission rates in plants.
Botanical Gazette.
(1982);
143
304-310
29
Falge E., Tenhunen J. D., Ryel R., Alsheimer M., Köstner B..
Modelling age- and density-related gas exchange of Picea abies canopies in the Fichtelgebirge, Germany.
Annals of Forest Science.
(2000);
57
229-243
30
Fall R., Wildermuth M. C..
Isoprene synthase: from biochemical mechanism to emission algorithm.
Journal of Geophysical Research.
(1998);
103
25599-25610
31
Fang C., Monson R. K., Cowling E. B..
Isoprene emission, photosynthesis, and growth in sweetgum (Liquidambar styraciflua) seedlings exposed to short- and long-term drying cycles.
Tree Physiology.
(1996);
16
441-446
32
Farquhar G. D., von Caemmerer S., Berry J. A..
A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.
Planta.
(1980);
149
78-90
33
Fehsenfeld F. C., Calvert J. G., Fall R., Goldan P., Guenther A. B., Hewitt C. N., Lamb B., Liu S., Trainer M., Westberg H., Zimmerman P..
Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry.
Global Biogeochemical Cycles.
(1992);
6
389-430
34
Fischbach R. J., Staudt M., Zimmer I., Rambal S., Schnitzler J.-P..
Seasonal pattern of monoterpene synthase activities in leaves of the evergreen tree Quercus ilex .
Physiologia Plantarum.
(2002);
114
354-360
35
Fischbach R. J., Zimmer I., Steinbrecher R., Pfichner A., Schnitzler J.-P..
Monoterpene synthase activities in leaves of Picea abies (L.) Karst. and Quercus ilex L.
Phytochemistry.
(2000);
54
257-265
36
Flügge U.-I., Gao W..
Transport of isoprenoid intermediates across chloroplast envelope membranes.
Plant Biology.
(2005);
7
91-97
37
Forkel R., Knoche R..
Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional climate-chemistry model.
Journal of Geophysical Research.
(2006);
111
DOI: 10.1029/2005JD006748
38
Fuentes J. D., Lerdau M., Atkinson R., Baldocchi D., Bottenheim J. W., Ciccioli P., Lamb B., Geron C., Gu L., Guenther A., Sharkey T. D., Stockwell W..
Biogenic hydrocarbons in the atmosphere boundary layer: a review.
Bulletin of the American Meteorological Society.
(2000);
81
1537-1575
39
Fuentes J. D., Wang D..
On the seasonality of isoprene emissions from a mixed temperate forest.
Ecological Applications.
(1999);
9
1118-1131
40
Fuentes J. D., Wang D., Den Hartog G., Neumann H. H., Dann T. F., Puckett K. J..
Modelled and field measurements of biogenic hydrocarbon emissions from a Canadian deciduous forest.
Atmospheric Environment.
(1995);
29
3003-3017
41
Fuentes J. D., Wang D., Gu L..
Seasonal variations in isoprene emissions from a Boreal aspen forest.
Journal of Applied Meteorology.
(1999);
38
855-870
42
Funk J. L., Jones C. G., Gray D. W., Throop H. L., Hyatt L. A., Lerdau M. T..
Variation in isoprene emission from Quercus rubra: sources, causes, and consequences for estimating fluxes.
Journal of Geophysical Research.
(2005);
110
DOI: 10.1029/2004JD005229
43
Funk J. L., Jones C. G., Lerdau M. T..
Defoliation effects on isoprene emission from Populus deltoides .
Oecologia.
(1999);
118
333-339
44
Funk J. L., Mak J. E., Lerdau M. T..
Stress-induced changes in carbon sources for isoprene production in Populus deltoides .
Plant, Cell and Environment.
(2004);
27
747-755
45 Gay D.. A natural hydrocarbon emission inventory using a simple forest canopy model. PhD Thesis, Washington State University, Pullman. (1987)
46
Geron C., Guenther A., Greenberg J..
Biogenic volatile organic compound emissions from desert vegetation of the southwestern US.
Atmospheric Environment.
(2006 a);
40
1645-1660
47
Geron C., Guenther A., Greenberg J., Loescher H. W., Clark D., Baker B..
Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica.
Atmospheric Environment.
(2002);
36
3793-3802
48
Geron C. D., Guenther A. B., Pierce T. E..
An improved model for estimating volatile organic compound emissions from forests in the eastern United States.
Journal of Geophysical Research.
(1994);
99
12773-12791
49
Geron C., Guenther A., Sharkey T., Arnts R. R..
Temporal variability in basal isoprene emission factor.
Tree Physiology.
(2000);
20
799-805
50
Geron C. D., Nie D., Arnts R. R., Sharkey T. D., Singsaas E. L., Vanderveer P. J., Guenther A., Sickles II., J. E., Kleindienst T. E..
Biogenic isoprene emission: model evaluation in a southeastern United States bottomland deciduous forest.
Journal of Geophysical Research.
(1997);
102
18903-18916
51
Geron C., Owen S., Guenther A., Greenberg J., Rasmussen R., Bai J. H., Li Q.-J., Baker B..
Volatile organic compounds from vegetation in southern Yunnan Province, China: emission rates and some potential regional implications.
Atmospheric Environment.
(2006 b);
40
1759-1773
52
Geron C., Pierce T., Guenther A..
Reassessment of biogenic volatile organic compound emissions in the Atlanta area.
Atmospheric Environment.
(1995);
29
1569-1578
53
Goldstein A. H., Goulden M. L., Munger J., William J., Wofsy S. C., Geron C. D..
Seasonal course of isoprene emissions from a midlatitude deciduous forest.
Journal of Geophysical Research.
(1998);
103
31045-31056
54
Grell G. A., Emeis S., Stockwell W. R., Schoenemeyer T., Forkel R., Michalakes J., Knoche R., Seidl W..
Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign.
Atmospheric Environment.
(2000);
34
1435-1453
55
Grell G. A., Peckham S. E., Schmitz R., McKeen S. A., Frost G., Skamarock W. C., Eder B..
Fully coupled “online” chemistry within the WRF model.
Atmospheric Environment.
(2005);
39
6957-6975
56
Grinspoon J., Bowman W. D., Fall R..
Delayed onset of isoprene emission in developing velvet bean (Mucuna sp.) leaves.
Plant Physiology.
(1991);
97
170-174
57
Grote R..
Sensitivity of volatile monoterpene emission to changes in canopy structure – a model based exercise with a process-based emission model.
New Phytologist.
(2006);
DOI: 10.1111/j.1469-8137.2006.01946.x
58
Grote R., Mayrhofer S., Fischbach R. J., Steinbrecher R., Staudt M., Schnitzler J.-P..
Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ile x (L.).
Atmospheric Environment.
(2006);
40
152-165
59
Grote R., Reiter I. M..
Competition-dependent modelling of foliage biomass in forest stands.
Trees – Structure and Function.
(2004);
18
596-607
60
Guenther A..
Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development.
Journal of Geophysical Research.
(1991);
96
10799-10808
61
Guenther A..
Seasonal and spatial variations in natural volatile organic compound emissions.
Ecological Applications.
(1997);
7
34-45
62 Guenther A.. Modeling biogenic volatile organic compound emissions to the atmosphere. Hewitt, C. N., ed. Reactive Hydrocarbons in the Atmosphere. San Diego; Academic Press (1999): 41-94
63
Guenther A., Archer S., Greenberg J., Harley P., Helmig D., Klinger L., Vierling L., Wildermuth M., Zimmermann P., Zitzer S..
Biogenic hydrocarbon emissions and landcover/climate change in a subtropical savanna.
Physics and Chemistry of the Earth.
(1999);
24
659-667
64
Guenther A., Hewitt C. N., Erickson D., Fall R., Geron C., Graedel T., Harley P., Klinger L., Lerdau M., McKay W. A., Pierce T., Scholes B., Steinbrecher R., Tallamraju R., Taylor J., Zimmerman P..
A global model of natural volatile organic compound emissions.
Journal of Geophysical Research.
(1995);
100
8873-8892
65
Guenther A., Karl T., Harley P., Wiedinmyer C., Palmer P. I., Geron C..
Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature).
Atmospheric Chemistry and Physics.
(2006);
6
3181-3210
66
Guenther A., Otter L., Zimmerman P., Greenberg J., Scholes R., Scholes M..
Biogenic hydrocarbon emissions from southern Africa savannas.
Journal of Geophysical Research.
(1996);
101
25859-25865
67
Guenther A., Zimmerman P., Harley P., Monson R., Fall R..
Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysis.
Journal of Geophysical Research.
(1993);
98
12609-12617
68
Guenther A., Zimmerman P., Wildermuth M..
Natural volatile organic compound emission rate estimates for U.S. woodland landscapes.
Atmospheric Environment.
(1994);
28
1197-1210
69
Gulden L., Yang Z.-L..
Development of species-based, regional emission capacities for simulation of biogenic volatile organic compound emissions in land-surface models: an example from Texas, USA.
Atmospheric Environment.
(2006);
40
1464-1479
70
Hakola H., Rinne J., Laurila T..
The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula) and european aspen (Populus tremula) .
Atmospheric Environment.
(1998);
32
1825-1833
71
Hanson D. T., Sharkey T. D..
Rate of acclimation of the capacity for isoprene emission in response to light and temperature.
Plant, Cell and Environment.
(2001);
24
937-946
72
Hari P., Mäkelä A..
Annual pattern of photosynthesis in Scots pine in the boreal zone.
Tree Physiology.
(2003);
23
145-155
73
Harley P., Guenther A., Zimmerman P..
Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves.
Tree Physiology.
(1996);
16
25-32
74
Harley P. C., Litvak M. E., Sharkey T. D..
Isoprene emission from velvet bean leaves. Interactions among nitrogen availability, growth photon flux density and leaf development.
Plant Physiology.
(1994);
105
279-285
75
Harley P. C., Thomas R. B., Reynolds J. F., Strain B. R..
Modelling photosynthesis of cotton grown in elevated CO2 .
Plant, Cell and Environment.
(1992);
15
271-282
76
Harley P., Vasconcellos P., Vierling L., Pinheiro C. C. D. S., Greenberg J., Guenther A., Klinger L., De Almeida S. S., Neill D., Baker T., Phillips O., Malhi Y..
Variation in potential for isoprene emissions among Neotropical forest sites.
Global Change Biology.
(2004);
10
630-650
77
Helmig D., Ortega J., Guenther A., Herrick J. D., Geron C..
Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US.
Atmospheric Environment.
(2006);
40
4150-4157
78
Holzinger R., Lee A., McKay M., Goldstein A. H..
Seasonal variability of monoterpene emission factors for a Ponderosa pine plantation in California.
Atmospheric Chemistry and Physics.
(2006);
6
1267-1274
79
Holzke C., Hoffmann T., Jaeger L., Koppmann R., Zimmer W..
Diurnal and seasonal variation of monoterpene and sesquiterpene emissions from Scots pine (Pinus sylvestris L.).
Atmospheric Environment.
(2006);
40
3174-3185
80
Huber L., Laville P., Fuentes J. D..
Uncertainties in isoprene emissions from a mixed deciduous forest estimated using a canopy microclimate model.
Journal of Applied Meteorology.
(1999);
38
899-912
81
Ishii H., Ford E. D., Boscolo M. E., Manriquez C. A., Wilson M. E., Hinckley T. M..
Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position and epicormic shoot production.
Tree Physiology.
(2002);
22
31-40
82
Jasoni R., Kane C., Green C., Peffley E., Tissue D., Thompson L., Payton P., Pare P. W..
Altered leaf and root emissions from onion (Allium cepa L.) grown under elevated CO2 conditions.
Environmental and Experimental Botany.
(2004);
51
273-280
83
Karl T., Guenther A., Spirig C., Hansel A., Fall R..
Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan.
Geophysical Research Letters.
(2003);
30
2186
DOI: 10.1029/2003GL018432
84
Karl T., Potosnak M., Guenther A., Clark D., Walker J., Herrick J. D., Geron C..
Exchange processes of volatile organic compounds above a tropical rain forest: implications for modeling tropospheric chemistry above dense vegetation.
Journal of Geophysical Research-Atmospheres.
(2004);
109
DOI: 10.1029/2004JD004738
85
Kempf K., Allwine E., Westberg H., Claiborn C., Lamb B..
Hydrocarbon emissions from spruce species using environmental chamber and branch enclosure methods.
Atmospheric Environment.
(1996);
30
1381-1389
86
Kesselmeier J..
Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies.
Journal of Atmopsheric Chemistry.
(2001);
39
219-233
87
Kesselmeier J., Staudt M..
Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology.
Journal of Atmospheric Chemistry.
(1999);
33
23-88
88
Kim J. C., Kim K. J., Kim D. S., Han J. S..
Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea.
Chemosphere.
(2005);
59
1685-1696
89
Kirschbaum M. U. F., Küppers M., Schneider H., Giersch C., Noe S..
Modelling photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates.
Planta.
(1998);
204
16-26
90
Kreuzwieser J., Rennenberg H., Steinbrecher R..
Impact of short-term and long-term elevated CO2 on emission of carbonyls from adult Quercus petraea and Carpinus betulus trees.
Environmental Pollution.
(2006);
142
246-253
91
Kucharik C. J., Norman J. M., Gower S. T..
Characterization of radiation regimes in nonrandom forest canopies: theory, measurements, and a simplified modeling approach.
Tree Physiology.
(1999);
19
695-706
92
Kuhn U., Rottenberger S., Biesenthal T., Wolf A., Schebeske G., Ciccioli P., Brancaleoni E., Frattoni M., Tavares T. M., Kesselmeier J..
Seasonal differences in isoprene and light-dependent monoterpene emission by Amazonian tree species.
Global Change Biology.
(2004 a);
10
663-682
93
Kuhn U., Rottenberger S., Biesenthal T., Wolf A., Schebeske G., Ciccioli P., Kesselmeier J..
Strong correlation between isoprene emission and gross photosynthetic capacity during leaf phenology of the tropical tree species Hymenaea courbaril with fundamental changes in volatile organic compounds emission composition during early leaf development.
Plant, Cell and Environment.
(2004 b);
27
1469-1485
94
Kulmala M., Suni T., Lehtinen K. E. J., Dal Maso M., Boy M., Reissell A., Rannik Ü., Aalto P., Keronen P., Hakola H., Bäck J., Hoffmann T., Vesala T., Hari P..
A new feedback mechanism linking forests, aerosols, and climate.
Atmospheric Chemistry and Physics.
(2004);
4
557-562
95
Kuzma J., Fall R..
Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase.
Plant Physiology.
(1993);
101
435-440
96
Lamb B., Gay D., Westberg H., Pierce T..
A biogenic hydrocarbon emission inventory for the U.S. using a simple forest canopy model.
Atmospheric Environment Part A.
(1993);
27
1673-1690
97
Lamb B., Guenther A., Gay D., Westberg H..
A national inventory of biogenic hydrocarbon emissions.
Atmospheric Environment.
(1987);
21
1695-1705
98
Lamb B., Thomas P., Baldocchi D., Allwine E., Dilts S., Westberg H., Geron C., Guenther A., Lee K., Harley P., Zimmerman P..
Evaluation of forest canopy models for estimating isoprene emissions.
Journal of Geophysical Research.
(1996);
101
22787-22798
99
Larsen D. R., Kershaw J. A..
Influence of canopy structure assumptions on predictions from Beer's law. A comparison of deterministic and stochastic simulations.
Agricultural and Forest Meteorology.
(1996);
81
61-77
100
Lathiere J., Hauglustaine D. A., De Noblet-Ducoudre N..
Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model.
Geophysical Research Letters.
(2005);
32
DOI: 10.1029/2005GL024164
101
Lathiere J., Hauglustaine D. A., Friend A. D., Noblet-Ducoudre N., Viovy N., Folberth G. A..
Impact of climate variability and land use changes on global biogenic volatile organic compound emissions.
Atmospheric Chemistry and Physics.
(2006);
6
2129-2146
102
Lazaridis M., Spyridaki A., Solberg S., Kallos G., Svendby T., Flatoy F., Drossinos I., Housiadas C., Smolik J., Colbeck I., Varinou M., Gofa F., Eleftheriadis K., Zdimal V., Georgopoulos P. G..
Modeling of combined aerosol and photooxidant processes in the Mediterranean area.
Water, Air, and Soil Pollution: Focus.
(2004);
4
3-21
103
Lehning A., Zimmer I., Steinbrecher R., Brüggemann N., Schnitzler J. P..
Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves.
Plant, Cell and Environment.
(1999);
22
495-504
104
Lehning A., Zimmer W., Zimmer I., Schnitzler J.-P..
Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates.
Journal of Geophysical Research.
(2001);
106
3157-3166
105
Lenz R., Selige T., Seufert G..
Scaling up the biogenic emissions from test sites at Castelporziano.
Atmospheric Environment.
(1997);
31
239-250
106
Lerdau M., Gray D..
Ecology and evolution of light dependent and light-independent phytogenic volatile organic carbon.
New Phytologist.
(2003);
157
199-211
107
Lerdau M., Matson P., Fall R., Monson R..
Ecological controls over monoterpene emissions from Douglas-fir (Pseudotsuga menziesii) .
Ecology.
(1995);
76
2640-2647
108
Lerdau M., Throop H. L..
Sources of variability in isoprene emission and photosynthesis in two species of tropical wet forest trees.
Biotropica.
(2000);
32
670-676
109
Lichtenthaler H. K., Schwender J., Disch A., Rohmer M..
Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway.
FEBS Letters.
(1997);
400
271-274
110
Lindfors V., Laurila T., Hakola H., Steinbrecher R., Rinne J..
Modeling speciated terpenoid emissions from the European boreal forest.
Atmospheric Environment.
(2000);
34
4983-4996
111 Lindfors V., Rinne J., Laurila T.. Upscaling the BIPHOREP Results – Regional Biogenic VOC Emissions in the European Boreal Zone. Laurila, Tuomas and Lindfors, Virpi. 127 – 150. EU Commission. Biogenic VOC emission and photochemistry in the boreal regions – Biphorep. (1999)
112
Litvak M. E., Madronich S., Monson R. K..
Herbivore-induced monoterpene emissions from coniferous forest: potential impact on local tropospheric chemistry.
Ecological Applications.
(1999);
9
1147-1159
113
Llusia J., Peñuelas J..
Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions.
American Journal of Botany.
(2000);
87
133-140
114
Llusia J., Peñuelas J., Gimeno B. S..
Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations.
Atmospheric Environment.
(2002);
36
3931-3938
115
Loreto F., Ciccioli P., Brancaleoni E., Valentini R., Lillis M. D., Csiky O., Seufert G..
A hypothesis on the evolution of isoprenoid emission by oaks based on the correlation between emission type and Quercus taxonomy.
Oecologia.
(1998 a);
115
302-305
116
Loreto F., Ciccioli P., Cecinato A., Brancaleoni E., Frattoni M., Fabozzi C., Tricoli D..
Evidence of the photosynthetic origin of monoterpenes emitted by Quercus ilex L leaves by C‐13 labeling.
Plant Physiology.
(1996);
110
1317-1322
117
Loreto F., Fischbach R. J., Schnitzler J. P., Ciccioli P., Brancaleoni E., Calfapietra C., Seufert G..
Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations.
Global Change Biology.
(2001 a);
7
709-717
118
Loreto F., Förster A., Dürr M., Csiky O., Seufert G..
On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes.
Plant, Cell and Environment.
(1998 b);
21
101-107
119
Loreto F., Mannozzi M., Maris C., Nascetti P., Ferranti F., Pasqualini S..
Ozone quenching properties of isoprene and its antioxidant role in leaves.
Plant Physiology.
(2001 b);
126
993-1000
120
Loreto F., Pinelli P., Brancaleoni E., Ciccioli P..
13 C labeling reveals chloroplastic and extrachloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formation.
Plant Physiology.
(2004);
135
1903-1907
121
Loreto F., Sharkey T. D..
A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L.
Planta.
(1990);
182
523-531
122
Loreto F., Sharkey T. D..
On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions.
Planta.
(1993);
189
420-424
123
Magel E., Mayrhofer S., Müller A., Zimmer I., Hampp R., Schnitzler J.-P..
Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves.
Atmospheric Environment.
(2006);
40
138-151
124
Martin D. M., Gershenzon J., Bohlmann J..
Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of norway spruce.
Plant Physiology.
(2003);
132
1586-1599
125
Martin M. J., Stirling C. M., Humphries S. W., Long S. P..
A process-based model to predict the effects of climatic change on leaf isoprene emission rates.
Ecological Modelling.
(2000);
131
161-174
126
Mayrhofer S., Teuber M., Zimmer I., Louis S., Fischbach R. J., Schnitzler J.-P..
Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves.
Plant Physiology.
(2005);
139
474-484
127
McGarvey D. J., Croteau R..
Terpenoid metabolism.
Plant Cell.
(1995);
7
1015-1026
128
Miller B., Madilao L. L., Ralph S., Bohlmann J..
Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce.
Plant Physiology.
(2005);
137
369-382
129
Monson R. K., Fall R..
Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration.
Plant Physiology.
(1989);
90
267-274
130
Monson R. K., Harley P. C., Litvak M. E., Wildermuth M., Guenther A. B., Zimmerman P. R., Fall R..
Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves.
Oecologia.
(1994);
99
260-270
131
Monson R. K., Hills A. J., Zimmerman P. R., Fall R..
Studies of the relationship between isoprene emission rate and CO2 or photon-flux density using a real-time isoprene analyser.
Plant, Cell and Environment.
(1991);
14
517-523
132
Monson R. K., Jaeger C. H., Adams W. W. I., Driggers E. M., Silver G. M., Fall R..
Relationship among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature.
Plant Physiology.
(1992);
98
1175-1180
133
Niinemets Ü..
Acclimation to low irradiance in Picea abies : influences of past and present light climate on foliage structure and function.
Tree Physiology.
(1997 a);
17
723-732
134
Niinemets Ü..
Distribution patterns of foliar carbon and nitrogen as affected by tree dimensions and relative light conditions in the canopy of Picea abies .
Trees – Structure and Function.
(1997 b);
11
144-154
135
Niinemets Ü..
Adjustment of foliage structure and function to a canopy light gradient in two co-existing deciduous trees. Variability in leaf inclination angles in relation to petiole morphology.
Trees – Structure and Function.
(1998);
12
446-451
136
Niinemets Ü., Cescatti A., Rodeghiero M., Tosens T..
Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species.
Plant, Cell and Environment.
(2005);
28
1552-1566
137
Niinemets Ü., Kull O., Tenhunen J. D..
Within-canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees.
Plant, Cell and Environment.
(2004 a);
27
293-312
138
Niinemets Ü., Loreto F., Reichstein M..
Physiological and physicochemical controls on foliar volatile organic compound emissions.
Trends in Plant Science.
(2004 b);
9
180-186
139
Niinemets Ü., Lukjanova A..
Needle longevity, shoot growth and branching frequency in relation to site fertility and within-canopy light conditions in Pinus sylvestris .
Annals of Forest Science.
(2003);
60
195-208
140
Niinemets Ü., Oja V., Kull O..
Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees.
Plant, Cell and Environment.
(1999 b);
22
1497-1513
141
Niinemets Ü., Portsmuth A., Tobias M..
Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants.
New Phytologist.
(2006);
171
91-104
142
Niinemets Ü., Reichstein M..
Effects of nonspecific monoterpenoid storage in leaf tissues in emission kinetics and composition in Mediterranean sclerophyllous Quercus species: a model analysis.
Global Biogeochemical Cycles.
(2002);
16
DOI: 10.1029/2002GB001927
143
Niinemets Ü., Reichstein M..
Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained.
Journal of Geophysical Research – Atmospheres.
(2003);
108
4208
DOI: 10.1029/2002JD002620
144
Niinemets Ü., Reichstein M., Staudt M., Seufert G., Tenhunen J. D..
Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea .
Plant Physiology.
(2002 a);
130
1371-1385
145
Niinemets Ü., Seufert G., Steinbrecher R., Tenhunen J. D..
A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species.
New Phytologist.
(2002 b);
153
257-273
146
Niinemets Ü., Tamm Ü..
Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands.
Tree Physiology.
(2005);
25
1001-1014
147
Niinemets Ü., Tenhunen J. D., Harley P. C., Steinbrecher R..
A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus .
Plant, Cell and Environment.
(1999 a);
22
1319-1335
148
Niinemets Ü., Valladares F..
Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints.
Plant Biology.
(2004);
6
254-268
149
Noe S. M., Ciccioli P., Brancaleoni E., Loreto F., Niinemets Ü..
Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics.
Atmospheric Environment.
(2006);
40
4649-4662
150
Ohta K..
Diurnal and seasonal variations in isoprene emission from live oak.
Geochemical Journal.
(1986);
19
269-274
151
Otter L. B., Guenther A., Greenberg J..
Seasonal and spatial variations in biogenic hydrocarbon emissions from southern African savannas and woodlands.
Atmospheric Environment.
(2002);
36
4265-4275
152
Otter L., Guenther A., Wiedinmyer C., Fleming G., Harley P., Greenberg J..
Spatial and temporal variations in biogenic volatile organic compound emissions for Africa south of the equator.
Journal of Geophysical Research – Atmospheres.
(2003);
108
SAF 41-1
DOI: 10.1029/2002JD002609
153
Owen S. M., Boissard C., Hewitt C. N..
Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale.
Atmospheric Environment.
(2001);
35
5393-5409
154
Palmer P. I., Abbot D. S., Fu T.-M., Jacob D. J., Chance K., Kurosu T. P., Guenther A., Wiedinmyer C., Stanton J. C., Pilling M. J., Pressley S., Lamb B., Sumner A. L..
Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column.
Journal of Geophysical Research.
(2006);
111
DOI: 10.1029/2005JD006689
155
Pegoraro E., Abrell L., Van Haren J., Barron-Gafford G., Grieve K. A., Malhi Y., Murthy R., Lin G..
The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm.
Global Change Biology.
(2005);
11
1234-1246
156
Pegoraro E., Rey A., Bobich E. G., Barron-Gafford G. A., Grieve K. A., Mahli Y., Murthy R..
Effect of elevated CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought.
Functional Plant Biology.
(2004 a);
31
1137-1147
157
Pegoraro E., Rey A., Greenberg J., Harley P., Grace J., Mahli Y., Guenther A..
Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill.
Atmospheric Environment.
(2004 b);
38
6149-6156
158
Pegoraro E., Rey A., Abrell L., Van Haren J., Lin G..
Drought effect on isoprene production and consumption in Biosphere 2 tropical rainforest.
Global Change Biology.
(2006);
12
456-469
159
Peñuelas J., Llusia J..
Seasonal patterns of non-terpenoid C‐6-C10VOC emission from seven Mediterranean woody species.
Chemosphere.
(2001);
45
237-244
160
Peñuelas J., Llusia J., Asensio D., Munne-Bosch S..
Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions.
Plant, Cell and Environment.
(2005);
28
278-286
161
Petron G., Harley P., Greenberg J., Guenther A..
Seasonal temperature variations influence isoprene emissions.
Geophysical Research Letters.
(2001);
28
1707-1710
162
Pierce T., Geron C., Bender L., Dennis R., Tonnesen G., Guenther A..
Influence of increased isoprene emissions on regional ozone modeling.
Journal of Geophysical Research – Atmospheres.
(1998);
103
25611-25629
163
Pierce T., Waldruff P..
PC-BEIS: a personal computer version of the biogenic emission inventory system.
Journal of Air and Waste Management Association.
(1991);
41
937-941
164
Pio C. A., Silva P. A., Cerqueira M. A., Nunes T. V..
Diurnal and seasonal emissions of volatile organic compounds from cork oak (Quercus suber) trees.
Atmospheric Environment.
(2005);
39
1817-1827
165
Plaza J., Nunez L., Pujadas M., Perrez-Pastor R., Bermejo V., Garcia-Alonso S., Elvira S..
Field monoterpene emission of Mediterranean oak (Quercus ilex) in the central Iberian Peninsula measured by enclosure and micrometeorological techniques: observation of drought stress effect.
Journal of Geophysical Research.
(2005);
110
DOI: 10.1029/2004JD005168
166
Possell M., Heath J., Hewitt C. N., Ayres E., Kerstiens G..
Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur .
Global Change Biology.
(2004);
10
1835-1843
167
Possell M., Hewitt C. N., Beerling D. J..
The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants.
Global Change Biology.
(2005);
11
60-69
168
Pressley S., Lamb B., Westberg H., Vogel C..
Relationships among canopy scale energy fluxes and isoprene flux derived from long-term, seasonal eddy covariance measurements over a hardwood forest.
Agricultural and Forest Meteorology.
(2006);
136
188-202
169
Rapparini F., Baraldi R., Facini O..
Seasonal variation of monoterpene emission from Malus domestica and Prunus avium .
Phytochemistry.
(2001);
57
681-687
170
Rapparini F., Baraldi R., Miglietta F., Loreto F..
Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment.
Plant, Cell and Environment.
(2004);
27
381-391
171
Rosenstiel T. N., Ebbets A. L., Khatri W. C., Fall R., Monson R. K..
Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of isoprene emission rate.
Plant Biology.
(2004);
6
12-21
172
Rosenstiel T. N., Fisher A. J., Fall R., Monson R. K..
Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species.
Plant Physiology.
(2002);
129
1276-1284
173
Rosenstiel T. N., Potosnak M. J., Griffin K. L., Fall R., Monson R. K..
Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem.
Nature.
(2003);
421
256-259
174
Sabillon D., Cremades L. V..
Diurnal and seasonal variation of monoterpene emission rates for two typical Mediterranean species (Pinus pinea and Quercus ilex) from field measurements – relationship with temperature and PAR.
Atmospheric Environment.
(2001);
35
4419-4431
175
Schaab G., Steinbrecher R., Lacaze B..
Influence of seasonality, canopy light extinction, and terrain on potential isoprenoid emission from a Mediterranean-type ecosystem in France.
Journal of Geophysical Research – Atmospheres.
(2003);
108
1-14
176
Schnitzler J.-P., Lehning A., Steinbrecher R..
Seasonal pattern of isoprene synthase activity in Quercus robur leaves and its significance for modelling isoprene emission rates.
Botanica Acta.
(1997);
110
240-243
177
Schnitzler J.-P., Zimmer I., Bachl A., Arend M., Fromm J., Fischbach R. J..
Biochemical properties of isoprene synthase in poplar (Populus canescens) .
Planta.
(2005);
222
777-786
178
Scholefield P. A., Doick K. J., Herbert B. M. J., Hewitt C. N. S., Schnitzler J.-P., Pinelli P., Loreto F..
Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring.
Plant, Cell and Environment.
(2004);
27
393-401
179
Schuh G., Heiden A. C., Hoffmann T., Kahl J., Rockel P., Rudolph J., Wildt J..
Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity.
Journal of Atmospheric Chemistry.
(1997);
27
291-318
180
Scott K. I., Benjamin M. T..
Development of a biogenic volatile organic compounds emission inventory for the SCOS97-NARSTO domain.
Atmospheric Environment.
(2003);
37
39-49
181
Sharkey T. D..
O2 -insensitive photosynthesis in C3 plants.
Plant Physiology.
(1985);
78
71-75
182
Sharkey T. D..
Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene.
Plant, Cell and Environment.
(2005);
28
269-277
183
Sharkey T. D., Chen X., Yeh S..
Isoprene increases thermotolerance of fosmidomycin-fed leaves.
Plant Physiology.
(2001);
125
2001-2006
184
Sharkey T. D., Loreto F..
Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves.
Oecologia.
(1993);
95
328-333
185 Sharkey T. D., Loreto F., Delwiche C. F.. The biochemistry of isoprene emission from leaves during photosynthesis. Sharkey, T. D., Holland, E. A., and Mooney, H. A., eds. Trace Gas Emissions by Plants. New York; Academic Press (1991 b): 153-184
186
Sharkey T. D., Loreto F., Delwiche C. F..
High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves.
Plant, Cell and Environment.
(1991 a);
14
333-338
187
Sharkey T. D., Singsaas E. L., Lerdau M. T., Geron C. D..
Weather effects on isoprene emission capacity and applications in emissions algorithms.
Ecological Applications.
(1999);
9
1132-1137
188
Sharkey T. D., Stitt M., Heineke D., Gerhardt R., Raschke K., Heldt H. W..
Limitation of photosynthesis by carbon metabolism. II. O2 insensitive CO2 uptake results from limitation of triose phosphate utilization.
Plant Physiology.
(1986);
81
1123-1129
189
Sharkey T. D., Yeh S..
Isoprene emission from plants.
Annual Review of Plant Physiology and Molecular Biology.
(2001);
52
407-436
190
Simpson D., Guenther A., Hewitt C. N., Steinbrecher R..
Biogenic emissions in Europe. 1. Estimates and uncertainties.
Journal of Geophysical Research.
(1995);
100
22875-22890
191
Simpson D., Winiwarter W., Börjesson G., Cinderby S., Ferreiro A., Guenther A., Hewitt C. N., Janson R., Khalil M. A. K., Owen S., Pierce T. E., Puxbaum H., Shearer M., Skiba U., Steinbrecher R., Tarrason L., Öquist M. G..
Inventorying emissions from nature in Europe.
Journal of Geophysical Research.
(1999);
104
8113-8152
192
Singsaas E. L., Laporte M. M., Shi J.-Z., Monson R. K., Bowling D. R., Johnson K., Lerdau M., Jasentuliytana A., Sharkey T. D..
Kinetics of leaf temperature fluctuation affect isoprene emission from red oak (Quercus rubra) leaves.
Tree Physiology.
(1999);
19
917-924
193
Singsaas E. L., Sharkey T. D..
The regulation of isoprene emission responses to rapid leaf temperature fluctuations.
Plant, Cell and Environment.
(1998);
21
1181-1188
194
Singsaas E. L., Sharkey T. D..
The effects of high temperature on isoprene synthesis in oak leaves.
Plant, Cell and Environment.
(2000);
23
751-757
195
Solmon F., Sarrat C., Serca D., Tulet P., Rosset R..
Isoprene and monoterpenes biogenic emissions in France: modeling and impact during a regional pollution episode.
Atmospheric Environment.
(2004);
38
3853-3865
196
Spirig C., Neftel A., Ammann C., Dommen J., Grabmer W., Thielmann A., Schaub A., Beauchamp J., Wisthaler A., Hansel A..
Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry.
Atmospheric Chemistry and Physics.
(2005);
5
465-481
197
Spittler M., Barnes I., Bejan I., Brockmann K. J., Benter T., Wirtz K..
Reactions of NO3 radicals with limonene and a -pinene: product and SOA formation.
Atmospheric Environment.
(2006);
40
116-127
198
Staudt M., Bertin N., Frenzel B., Seufert G..
Seasonal variation in amount and composition of monoterpenes emitted by young Pinus pinea trees – implications for emission modeling.
Journal of Atmospheric Chemistry.
(2000);
35
77-99
199
Staudt M., Bertin N., Hansen U., Seufert G., Ciccioli P., Foster P., Frenzel B., Fugit J. L..
Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions.
Atmospheric Environment.
(1997);
31
145-156
200
Staudt M., Joffre R., Rambal S..
How growth conditions affect the capacity of Quercus ilex leaves to emit monoterpenes.
New Phytologist.
(2003);
158
61-73
201
Staudt M., Joffre R., Rambal S., Kesselmeier J..
Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relations to structural and ecophysiological parameters.
Tree Physiology.
(2001);
21
437-445
202
Staudt M., Rambal S., Joffre R., Kesselmeier J..
Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France.
Journal of Geophysical Research.
(2002);
107
4602-4608
203
Stewart H. E., Hewitt C. N., Bunce R. G. H., Steinbrecher R., Smiatek G., Schoenemeyer T..
A highly spatially and temporally resolved inventory for biogenic isoprene and monoterpene emissions – model description and application to Great Britain.
Journal of Geophysical Research.
(2003);
108
4644
DOI: 10.1029/2002JD002694
204
Stitt M..
Limitation of photosynthesis by carbon metabolism. I. Evidence for excess electron transport capacity in leaves carrying out photosynthesis in saturating light and CO2 .
Plant Physiology.
(1986);
81
1115-1122
205
Thunis P., Cuvelier C..
Impact of biogenic emissions on ozone formation in the Mediterranean area – a BEMA modelling study.
Atmospheric Environment.
(2000);
34
467-481
206
Tingey D. T., Evans R., Gumpertz M..
Effects of environmental conditions on isoprene emission from live oak.
Planta.
(1981);
152
565-570
207
Tingey D., Manning M., Grothaus L., Burns W..
Influence of light and temperature on monoterpene emission rates from slash pine.
Plant Physiology.
(1980);
65
797-801
208 Tingey D. T., Turner D. P., Weber J. A.. Factors controlling the emissions of monoterpenes and other volatile organic compounds. Sharkey, T. D., Holland, E. A., and Mooney, H. A., eds. Trace Gas Emissions by Plants. New York; Academic Press (1991): 93-119
209
Tunved P., Hansson H.-C., Kerminen V.-M., Ström J., Dal Maso M., Lihavainen H., Viisanen Y., Aalto P. P., Komppula M., Kulmala M..
High natural aerosol loading over boreal forests.
Science.
(2006);
312
261-263
210
van Poecke R. M., Dicke M..
Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant.
Plant Biology.
(2004);
6
387-401
211
Velikova V., Loreto F..
On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress.
Plant, Cell and Environment.
(2005);
28
318-327
212
Vuorinen T., Nerg A.-M., Vapaavuori E., Holopainen J. K..
Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations.
Atmospheric Environment.
(2005);
39
1185-1197
213
Westberg H., Lamb B., Kempf K., Allwine G..
Isoprene emission inventory for the BOREAS southern study area.
Tree Physiology.
(2000);
20
735-743
214
Wiberley A. E., Linskey A. R., Falbel T. G., Sharkey T. D..
Development of the capacity for isoprene emission in kudzu.
Plant, Cell and Environment.
(2005);
28
898-905
215 Wildermuth M. C.. Subcellular location and biophysical regulation of foliar isoprene production (chloroplasts). PhD Thesis, Univ. Colorado Boulder, USA. (1997): 1-307
216
Xu Y., Wesely M. L., Pierce T. E..
Estimates of biogenic emissions using satellite observations and influence of isoprene emission on O3 formation over the eastern United States.
Atmospheric Environment.
(2002);
36
5819-5829
217
Zeidler J. G., Lichtenthaler H. K., May H. U., Lichtenthaler F. W..
Is isoprene emitted by plants synthesized via the novel isopentenyl pyrophosphate pathway?.
Zeitschrift für Naturforschung.
(1997);
52c
15-23
218
Zhang X. S., Mu Y. J., Song W. Z., Zhuang Y. H..
Seasonal variations of isoprene emissions from deciduous trees.
Atmospheric Environment.
(2000);
34
3027-3032
219
Zimmer W., Brüggemann N., Emeis S., Giersch C., Lehning A., Steinbrecher R., Schnitzler J.-P..
Process-based modelling of isoprene emission by oak leaves.
Plant, Cell and Environment.
(2000);
23
585-595
220
Zimmer W., Steinbrecher R., Körner C., Schnitzler J. P..
The process-based SIM‐BIM model: towards more realistic prediction of isoprene emissions from adult Quercus petraea forest trees.
Atmospheric Environment.
(2003);
37
1665-1671
R. Grote
Research Center Karlsruhe GmbH Institute for Meteorology and Climate Research Atmospheric Environmental Research (IMK‐IFU)
Kreuzeckbahnstraße 19
82467 Garmisch-Partenkirchen
Germany
Email: ruediger.grote@imk.fzk.de
Guest Editor: F. Loreto