Int J Sports Med 2008; 29(5): 414-418
DOI: 10.1055/s-2007-964980
Orthopedics & Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

Acute Changes in Hamstrings Musculo-Articular Dissipative Properties Induced by Cyclic and Static Stretching

A. Nordez1 , P. McNair2 , P. Casari3 , C. Cornu1
  • 1Université de Nantes, Nantes Atlantique Universités, Laboratoire “Motricité, Interactions, Performance”, JE 2438, UFR STAPS, Nantes, France
  • 2Physical Rehabilitation Research Centre, Auckland University of Technology, Auckland, New Zealand
  • 3Université de Nantes, Nantes Atlantique Universités, CNRS, Institut de Recherche en Génie Civil et Mécanique, UMR 6183, UFR des Sciences et Techniques, Nantes, France
Further Information

Publication History

accepted after revision July 15, 2006

Publication Date:
13 September 2007 (online)

Abstract

This study was designed to measure changes in musculo-articular dissipative properties related to viscosity that were induced by passive cyclic and static stretching. Musculo-articular dissipative properties were assessed by calculating a dissipation coefficient using potential elastic energies stored and restituted during cyclic stretching. Eight subjects performed five passive knee extensions/flexions cycles on a Biodex® dynamometer at 5° · s-1 to 80 % of their maximal range of motion before and after a static stretching protocol. Electromyographic activity from the hamstring muscles was monitored and remained constant during cyclic stretching and after static stretching (p > 0.05). The dissipation coefficient decreased during cyclic stretching (- 28.8 ± 6.0 %, p < 0.001), while it was slightly increased after static stretching (+ 3.8 ± 5.0 %, p = 0.037). The findings showed that energy stored and energy restituted decreased during cyclic stretching and after static stretching (p < 0.05). During unloading, passive torque remained constant during cyclic stretching, but was decreased after static stretching. The findings indicate that musculo-articular dissipative properties were primarily affected by a single cycle of motion, and were not influenced by static stretching procedures. The decrease in dissipation coefficient following cyclic motion indicates that the musculo-articular system displays thixotropic behavior.

References

  • 1 Aagaard P, Simonsen E B, Trolle M, Bangsbo J, Klausen K. Isokinetic hamstring/quadriceps strength ratio: influence from joint angular velocity, gravity correction and contraction mode.  Acta Physiol Scand. 1995;  154 421-427
  • 2 Barnes H A. Thixotropy - a review.  J Non-Newtonian Fluid Mech. 1997;  70 1-33
  • 3 Cornu C, Goubel F, Fardeau M. Muscle and joint elastic properties during elbow flexion in Duchenne muscular dystrophy.  J Physiol. 2001;  533 605-616
  • 4 Desplantez A, Cornu C, Goubel F. Viscous properties of human muscle during contraction.  J Biomech. 1999;  32 555-562
  • 5 Esteki A, Mansour J M. An experimentally based nonlinear viscoelastic model of passive joint moment.  J Biomech. 1996;  29 443-450
  • 6 Gajdosik R L. Passive extensibility of skeletal muscle: review of the literature with clinical implications.  Clin Biomech. 2001;  16 87-101
  • 7 Hermens H J, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures.  J Electromyogr Kinesiol. 2000;  10 361-374
  • 8 Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo.  J Appl Physiol. 2001;  90 520-527
  • 9 Magnusson S P, Simonsen E B, Aagaard P, Kjaer M. Biomechanical responses to repeated stretches in human hamstring muscle in vivo.  Am J Sports Med. 1996;  24 622-628
  • 10 Magnusson S P. Passive properties of human skeletal muscle during stretch maneuvers. A review.  Scand J Med Sci Sports. 1998;  8 65-77
  • 11 Magnusson S P, Aagard P, Simonsen E, Bojsen-Moller F. A biomechanical evaluation of cyclic and static stretch in human skeletal muscle.  Int J Sports Med. 1998;  19 310-316
  • 12 Mandel J. Aperçu sur les principaux comportements rhélogiques. Persoz B La Rhéololgie. Paris; Masson & Cie 1969: 1-17
  • 13 McFaull S R, Lamontagne A. In vivo measurement of the passive viscoelastic properties of the human knee joint.  Hum Mov Sci. 1998;  17 139-165
  • 14 McNair P J, Dombroski E W, Hewson D J, Stanley S N. Stretching at the ankle joint: viscoelastic responses to holds and continuous passive motion.  Med Sci Sports Exerc. 2001;  33 354-358
  • 15 McNair P J, Hewson D J, Dombroski E, Stanley S N. Stiffness and passive peak force changes at the ankle joint: the effect of different joint angular velocities.  Clin Biomech (Bristol, Avon). 2002;  17 536-540
  • 16 Persoz (ed) B. Introduction à l'étude de la rhéologie. Paris; Dunod 1960
  • 17 Proske U, Morgan D L. Do cross-bridges contribute to the tension during stretch of passive muscle?.  J Muscle Res Cell Motil. 1999;  20 433-444
  • 18 Riemann B L, DeMont R G, Ryu K, Lephart S M. The effects of sex, joint angle, and the gastrocnemius muscle on passive ankle joint complex stiffness.  J Athl Train. 2001;  36 369-375
  • 19 Stromberg D D, Wiederielm C A. Viscoelastic description of a collagenous tissue in simple elongation.  J Appl Physiol. 1969;  26 857-862
  • 20 Taylor C D, Dalton J D, Seaber A V, Garrett W E. Viscoelastic properties of muscle-tendon units. The biomechanical effetcts of stretching.  Am J Sports Med. 1990;  18 300-309
  • 21 Whitehead N P, Gregory J E, Morgan D L, Proske U. Passive mechanical properties of the medial gastrocnemius muscle of the cat.  J Physiol. 2001;  536 893-903

 Mr.
Christophe Cornu

UFR STAPS - Laboratoire Motricité, Interactions Performance (JE 2438)
Université de Nantes Nantes Atlantique Universités

25 bis, bd Guy Mollet, BP 72206

Nantes, F 44000

France

Phone: + 33 2 51 83 72 22

Fax: + 33 2 51 83 72 10

Email: christophe.cornu@univ-nantes.fr