Int J Sports Med 2007; 28(12): 1065-1069
DOI: 10.1055/s-2007-965130
Genetics & Molecular Biology

© Georg Thieme Verlag KG Stuttgart · New York

Physical Activity, Cdx-2 Genotype, and BMD

P. Gentil1 , R. M. Lima1 , T. C. L. Lins2 , B. S. Abreu2 , R. W. Pereira1 , 2 , R. J. Oliveira1
  • 1Programa de Pós Graduação em Educação Física, Universidade Católica de Brasília, Taguatinga, Brazil
  • 2Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Taguatinga, Brazil
Further Information

Publication History

accepted after revision December 24, 2006

Publication Date:
05 July 2007 (online)

Abstract

The present study investigated the interaction between Cdx-2 polymorphism and physical activity level over bone mineral density (BMD) variation in Brazilian postmenopausal women. One hundred and ninety women volunteered to participate in the study (66.6 ± 5.3 years, 64.58 ± 11.74 kg and 151.94 ± 6.36 cm). Physical activity level (PAL) was assessed using the international physical activity questionnaire (IPAQ). Lumbar spine (L2 - L4), femoral neck, great trochanter and Wards' triangle bone mineral density (BMD) were measured by dual-energy X‐ray absorptiometry (DXA). The Cdx-2 polymorphism was genotyped by minisequencing, using the SNaPshot™ Multiplex System (Applied Biosystems, Foster City, CA, USA). Overall, no significant association was found between Cdx-2 polymorphism and adjusted BMD at any site. However, the results revealed a significant interaction between PAL and Cdx-2 genotype on adjusted femoral neck and Wards' triangle BMD. Active women carrying the Cdx-G/G genotype showed higher adjusted femoral neck and Wards' triangle BMD than inactive women carrying the same genotype, thus suggesting a larger chronic response to physical activity. These results suggest that, in postmenopausal women, the Cdx-2 polymorphism does not influence BMD by itself; however, it seems to affect the BMD response to physical activity since only the Cdx-G/G genotype carriers presented significant differences between active and inactive.

References

  • 1 Abrams S A, Griffin I J, Hawthorne K M, Chen Z, Gunn S K, Wilde M, Darlington G, Shypailo R J, Ellis K J. Vitamin D receptor Fok1 polymorphisms affect calcium absorption, kinetics and bone mineralization rates during puberty.  J Bone Miner Res. 2005;  20 945-953
  • 2 Ames S K, Ellis K J, Gunn S K, Copeland K C, Abrams S A. Vitamin D receptor gene FokI polymorphism predicts calcium absorption and bone mineral density in children.  J Bone Miner Res. 1999;  14 740-746
  • 3 Amling M, Priemel M, Holzmann T, Chapin K, Rueger Jm, Baron R, Demay M B. Rescue of the skeletal phenotype of vitamin D receptor ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses.  Endocrinology. 1999;  140 4982-4987
  • 4 Arai H, Miyamoto K, Yoshida M, Yamamoto H, Taketani Y, Morita K, Kubota M, Yoshida S, Ikeda M, Watabe F, Kanemasa Y, Takeda E. The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene.  J Bone Miner Res. 2001;  16 1256-1264
  • 5 Block J E. Interpreting studies of exercise and osteoporosis: a call for rigor.  Control Clin Trials. 1997;  18 54-57
  • 6 Bray M S. Genomics, genes, and environmental interaction: the role of exercise.  J Appl Physiol. 2000;  88 787-792
  • 7 Coupland C A, Cliffe S J, Bassey E J, Grainge M J, Hosking D J, Chilvers C E. Habitual physical activity and bone mineral density in postmenopausal women in England.  Int J Epidemiol. 1999;  28 241-246
  • 8 Cummings S R. Risk factors for hip fractures in white women.  N Engl J Med. 1995;  332 767-773
  • 9 Deng H W, Livshits G, Yakovenko K, Xu F H, Conway T, Davies K M, Deng H, Recker R R. Evidence for a major gene for bone mineral density/content in human pedigrees identified via probands with extreme bone mineral density.  Ann Hum Genet. 2002;  66 61-74
  • 10 Dequecker J, Nijs J, Verstraeten A, Geusens P, Gevers G. Genetic determinants of bone mineral content at the spine and radius: a twin study.  Bone. 1987;  8 207-209
  • 11 Fang Y, Van Meurs J BJ, Bergink A, Hofman A, Van Dujin C M, Van Leeuwen J PTM, Pols H AP, Utterlinden A G. Cdx-2 polymorphism in the promoter region of the human vitamin D receptor gene determines susceptibility to fracture in the elderly.  J Bone Miner Res. 2003;  18 1632-1641
  • 12 Feskanich D, Willett W, Colditz G. Walking and leisure-time activity and risk of hip fracture in postmenopausal women.  JAMA. 2002;  288 2300-2306
  • 13 Geusens P, Vandevyver C, Vanhoof J, Cassiman J J, Boonen S, Raus J. Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women.  J Bone Miner Res. 1997;  12 2082-2088
  • 14 Hallal P C, Victora C G, Wells J C, Lima R C. Physical inactivity: prevalence and associated variables in Brazilian adults.  Med Sci Sports Exerc. 2003;  35 1894-1900
  • 15 Johnell O, Kanis J A. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture.  Osteoporos Int. 2004;  15 897-902
  • 16 Kelley G A. Exercise and regional bone mineral density in postmenopausal women: a meta-analytic review of randomized trials.  Am J Phys Med Rehabil. 1998;  77 76-87
  • 17 Li Y C, Amling M, Pirro A E, Priemel M, Meuse J, Baron R, Delling G, Demay M B. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice.  Endocrinology. 1998;  139 4391-4396
  • 30 Lins T CL, Nogueira L R, Lima R M, Gentil P, Oliveira R J, Pereira R W. A multiplex single-base extension protocol for genotyping Cdx2, Fokl, Bsml, Apal, and Taql polymorphisms of the vitamin D receptor gene.  Genet Mol Res. 2007;  6 216-224
  • 18 Liu Y Z, Liu Y J, Recker R R, Deng H W. Molecular studies of identification of genes for osteoporosis: the 2002 update.  J Endocrinol. 2003;  177 147-196
  • 19 Livshits G, Karasik D, Pavlovsky O, Kobyliansky E. Segregation analysis reveals a major gene effect in compact and cancellous bone mineral density in 2 populations.  Hum Biol. 1999;  71 155-172
  • 20 Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures.  BMJ. 1996;  312 1254-1259
  • 21 Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E, Oliveira L C, Braggion G. Questionário Internacional de atividade física (IPAQ): estudo de validade e reprodutibilidade no Brasil.  Rev Bras Ativ Fís Saúde. 2001;  6 5-18
  • 22 Miller S A, Dykes D D, Polesky H F. A simple salting out procedure for extracting DNA from human nucleated cells.  Nucleic Acids Res. 1998;  16 1215
  • 23 Morita A, Iki M, Dohi Y, Ikeda Y, Kagamimori S, Kagawa Y, Yoneshima H. Effects of the Cdx-2 polymorphism of the vitamin D receptor gene and lifestyle factors on bone mineral density in a representative sample of Japanese women: the Japanese Population-based Osteoporosis (JPOS) Study.  Calcif Tissue Int. 2005;  77 339-347
  • 24 NIH - National Institute of Health . Osteoporosis, prevention, diagnosis and therapy.  NIH Consens Statement. 2000;  17 1-45
  • 25 Pate R R, Pratt M, Blair S N, Haskell W L, Macera C A, Bouchard C, Buchner D, Ettinger W, Heath G W, King A C, Kriska A, Leon A S, Marcus B H, Morris J, Paffenberger R S, Patrick K, Pollock M L, Rippe J M, Sallis J, Wilmore J H. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine.  JAMA. 1995;  273 402-407
  • 26 Puntila E, Kroger H, Lakka T, Tuppurainen M, Jurvelin J, Honkanen R. Leisure-time physical activity and rate of bone loss among peri- and postmenopausal women: a longitudinal study.  Bone. 2001;  29 442-446
  • 27 Ralston S H. Genetic control of susceptibility to osteoporosis.  J Clin Endocrinol Metab. 2002;  87 2460-2466
  • 28 Slemenda C W, Christian J C, Williams C J, Norton J A, Johnston Jr C C. Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates.  J Bone Miner Res. 1991;  6 561-567
  • 29 Sooy K, Sabbagh Y, Demay M B. Osteoblasts lacking the vitamin D receptor display enhanced osteogenic potential in vitro.  J Cell Biochem. 2005;  94 81-87
  • 31 Tsai H J, Choudhry S, Naqvi M, Rodriguez-Cintron W, Burchard E G, Ziv E. Comparison of three methods to estimate genetic ancestry and control for stratification in genetic association studies among admixed populations.  Hum Genet. 2005;  118 424-433
  • 32 USDHHS - U.S. Department Of Health And Human Services .Physical Activity and Health: A Report of the Surgeon General. Atlanta, GA; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion 1996
  • 33 Wolfarth B, Bray M S, Hagberg J M, Perusse L, Rauramaa R, Rivera M A, Roth S M, Rankinen T, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2004 update.  Med Sci Sports Exerc. 2005;  37 881-903
  • 34 Yamamoto H, Miamoto K I, Li B, Taketani Y, Kitano M, Inoue Y, Morita K, Pike J W, Takeda E. The caudal-related homeodomain protein Cdx-2 regulates vitamin D receptor gene expression in the small intestine.  J Bone Miner Res. 1999;  14 240-247

 Mr.
Paulo Gentil

Programa de Pós Graduação em Educação Física
Universidade Católica de Brasília

QS 07 lote 01 EPCT

71.966 - 700 Taguatinga

Brazil

Phone: + 55 61 33 56 93 56

Fax: + 55 61 33 56 93 56

Email: paulogentil@hotmail.com