Abstract
Sulfur metabolite levels and sulfur metabolism have been studied in a significant number of herbaceous and woody plant species. However, only a limited number of datasets are comparable and can be used to identify similarities and differences between these two groups of plants. From these data, it appears that large differences in sulfur metabolite levels, as well as the genetic organization of sulfate assimilation and metabolism do not exist between herbaceous plants and trees. The general response of sulfur metabolism to internal and/or external stimuli, such as oxidative stress, seems to be conserved between the two groups of plants. Thus, it can be expected that, generally, the molecular mechanisms of regulation of sulfur metabolism will also be similar. However, significant differences have been found in fine tuning of the regulation of sulfur metabolism and in developmental regulation of sulfur metabolite levels. It seems that the homeostasis of sulfur metabolism in trees is more robust than in herbaceous plants and a greater change in conditions is necessary to initiate a response in trees. This view is consistent with the requirement for highly flexible defence strategies in woody plant species as a consequence of longevity. In addition, seasonal growth of perennial plants exerts changes in sulfur metabolite levels and regulation that currently are not understood. In this review, similarities and differences in sulfur metabolite levels, sulfur assimilation and its regulation are characterized and future areas of research are identified.
Key words
Adenosine 5′-phosphosulfate reductase (APR) - cell differentiation - compartmentation - cysteine - genetic engineering - glutathione - methionine - plant development - protein - ozone - oxidative stress - sulfate - sulfate assimilation - transgenic poplar.
References
1
Alexou M., Hofer N., Liu X. P., Rennenberg H., Haberer K..
Significance of ozone exposure for inter-annual differences in primary metabolites of old-growth beech (Fagus sylvatica) and Norway spruce (Picea abies) trees in a mixed forest stand.
Plant Biology.
(2007);
9
227-241
2
Arisi A.-C. M., Noctor G., Foyer C. H., Jouanin L..
Modification of thiol contents in poplars (Populus tremula × P. alba) overexpressing enzymes involved in glutathione synthesis.
Planta.
(1997);
203
362-372
3
Asada K..
The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1999);
50
601-639
4
Baier M., Kandlbinder A., Golldack D., Dietz K. J..
Oxidative stress and ozone: perception, signalling and response.
Plant, Cell and Environment.
(2005);
28
1012-1020
5
Bolchi A., Petrucco S., Tenca P. L., Foroni C., Ottonello S..
Coordinate modulation of maize sulphate permease and ATP sulphurylase mRNAs in response to variations in sulphur nutritional status: stereospecific down regulation by L-cysteine.
Plant Molecular Biology.
(1999);
39
527-537
6
Ball L., Accotto G.-P., Bechtold U., Creissen G., Funck D., Jimenez A., Kular B., Leyland N., Mejia-Carranza J., Reynolds H., Karpinski S., Mullineeaux P. M..
Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis .
Plant Cell.
(2004);
16
2448-2462
7
Baumbusch L. O., Eiblmeier M., Schnitzler J. P., Heller W., Sandermann H., Polle A..
Interactive effects of ozone and Pow UV‐B radiation on antioxidants in spruce (Picea abies) and pine (Pinus sylvestris ) needles.
Physiologia Plantarum.
(1998);
104
248-254
8
Benning C..
Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1998);
49
53-75
9
Bick J. A., Setterdahl A. T., Knaff D. B., Chen Y., Pitcher L. H., Zilinskas B. A., Leustek T..
Regulation of the plant-type 5′-adenylyl sulfate reductase by oxidative stress.
Biochemistry.
(2001);
40
9040-9048
10
Blaschke L., Schneider A., Herschbach C., Rennenberg H..
Reduced sulfur allocation from three-year-old needles of Norway spruce (Picea abies [Karst] L.).
Journal of Experimental Botany.
(1996);
47
1025-1032
11
Blaszczyk A., Brodzik R., Sirko A..
Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase.
The Plant Journal.
(1999);
20
237-243
12
Blaszczyk A., Sirko L., Hawkesford M. J., Sirko A..
Biochemical analysis of transgenic tobacco lines producing bacterial serine acetyltransferase.
Plant Science.
(2002);
162
589-597
13
Booker F. L., Fiscus E. L..
The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean.
Journal of Experimental Botany.
(2005);
56
2139-2151
14
Bourgis F., Roje S., Nuccio M. L., Fisher D. B., Tarczynski M. C., Li C., Herschbach C., Rennenberg H., Pimenta M. J., Shen T.-L., Gage D. A., Hanson A. D..
S-Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase.
Plant Cell.
(1999);
11
1485-1497
15
Bräuning H., Pahlich E., Muller C., Jager H. J..
Changes of the redox status of glutathione and ascorbate in leaves and apoplast of Phaseolus vulgaris cultivars under ozone stress.
Phyton - Annales Rei Botanicae.
(2005);
45
279-293
16
Brunner A. M., Busov V. B., Strauss S. H..
Poplar genome sequence: functional genomics in an ecologically dominant plant species.
Trends in Plant Science.
(2004);
9
49-56
17
Brunold C., Landolt W., Lavanchy P..
SO2 and assimilatory sulfate reduction in beech leaves.
Physiologia Plantarum.
(1983);
59
313-318
18
Burkey K. O., Wei C. M., Eason G., Ghosh P., Fenner G. P..
Antioxidant metabolite levels in ozone-sensitive and tolerant genotypes of snap bean.
Physiologia Plantarum.
(2000);
110
195-200
19
Cairns N. G., Pasternak M., Wachter A., Cobbett C. S., Meyer A. J..
Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo.
Plant Physiology.
(2006);
141
446-455
20
Calatayud A., Iglesias D. J., Talon M., Barreno E..
Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation.
Plant Physiology and Biochemistry.
(2003);
41
839-845
21
Calatayud A., Iglesias D. J., Talón M., Barreno E..
Response of spinach leaves (Spinacia oleracea L.) to ozone measured by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation.
Photosynthetica.
(2004);
42
23-29
22
Cataldo F..
On the action of ozone on proteins.
Polymer Degradation and Stability.
(2003);
82
105-114
23
Chalot M., Brunn A..
Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas.
FEMS Microbiology Reviews.
(1998);
22
21-44
24
Cheng J.-C., Seeley K. A., Sung Z. R..
RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip.
Plant Physiology.
(1995);
107
365-376
25
Chung H. G., Zak D. R., Lilleskov E. A..
Fungal community composition and metabolism under elevated CO2 and O3 .
Oecologia.
(2006);
147
143-154
26
Cobbett C. S., May M. J., Howden R., Rolls B..
The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase.
The Plant Journal.
(1998);
16
73-78
27
Creissen G., Firmin J., Freyer M., Kular B., Leyland N., Reynolds H., Pastori G., Wellburn F., Baker N., Wellburn A., Mullineaux P..
Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress.
Plant Cell.
(1999);
11
1277-1291
28
Creissen G., Firmin J., Freyer M., Kular B., Leyland N., Reynolds H., Pastori G., Wellburn F., Baker N., Wellburn A., Mullineaux P..
Correction: elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress.
Plant Cell.
(2000);
12
301
29
De Kok L. J., Stuiver C. E. E., Rubinigg M., Westerman S., Grill D..
Impact of atmospheric sulphur deposition on sulphur metabolism in plants: H2 S as sulphur source for sulphur deprived Brassica oleracea L.
Botanica Acta.
(1997);
110
411-419
30
Diara C., Castagna A., Baldan B., Sodi A. M., Sahr T., Langebartels C., Sebastiani L., Ranieri A..
Differences in the kinetics and scale of signalling molecule production modulate the ozone sensitivity of hybrid poplar clones: the roles of H2 O2 , ethylene and salicylic acid.
New Phytologist.
(2005);
168
351-364
31
Do Amarante L., Lima J. D., Sodek L..
Growth and stress conditions cause similar changes in xylem amino acids for different legume species.
Environmental and Experimental Botany.
(2006);
58
123-129
32
Driessche van der R., Langebartels C..
Foliar symptoms, ethylene biosynthesis and water-use of young Norway spruce (Picea abies [L] Karst) exposed to drought and ozone.
Water, Air and Soil Pollution.
(1994);
78
153-168
33
Durenkamp M., De Kok L. J..
Impact of pedospheric and atmospheric sulfur nutrition on sulfur metabolism of Allium cepa L., a species with a potential sink capacity for secondary sulfur compounds.
Journal of Experimental Botany.
(2004);
55
1821-1830
34
Edwards G. S., Kelly J. M..
Ectomycorrhizal colonization of Loblolly-pine seedlings during 3 growing seasons in response to ozone, acidic precipitation, and soil Mg status.
Environmental Pollution.
(1992);
76
71-77
35
Espunya M. C., Dáz M., Moreno-Romero J., Martínez M. C..
Modification of intracellular levels of glutathione-dependent formaldehyde dehydrogenase alters glutathione homeostasis and root development.
Plant, Cell and Environment.
(2006);
29
1002-1011
36
Esterbauer H., Grill D..
Seasonal variation of glutathione and glutathione reductase in needles of Picea abies .
Plant Physiology.
(1978);
61
119-121
37
Fahey J. W., Zalcmann A. T., Talaly P..
The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.
Phytochemistry.
(2001);
56
5-51
38
Foyer C. H., Noctor G..
Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context.
Plant, Cell and Environment.
(2005);
28
1056-1071
39
Foyer C., Souriau N., Perret S., Lelandais M., Kunert K.-J., Pruvost C., Jouanin L..
Overexpression of glutathione reductase bit not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.
Plant Physiology.
(1995);
109
1047-1057
40
Fricker M. D., May M., Meyer A. J., Sheard N., White N. S..
Measurement of glutathione levels in intact roots of Arabidopsis .
Journal of Microscopy.
(2000);
198
162-173
41
Geßler A., Schneider S., von Sengbusch D., Weber P., Hanemann U., Huber A., Rothe A., Kreutzer K., Rennenberg H..
Field and laboratory experiments on net uptake of nitrate and ammonium by roots of spruce (Picea abies) and beech (Fagus sylvatica) trees.
New Phytologist.
(1998);
138
275-285
42
Gómez L. D., Vanacker H., Buchner P., Noctor G., Foyer C. H..
Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling.
Plant Physiology.
(2004 a);
134
1662-1671
43
Gómez L. D., Noctor G., Knight M. R., Foyer C. H..
Regulation of calcium signalling and gene expression by glutathione.
Journal of Experimental Botany.
(2004 b);
55
1851-1859
44
Gupta A. S., Alscher R. G., McCune D..
Response of photosynthesis and cellular antioxidants to ozone in Populus leaves.
Plant Physiology.
(1991);
96
650-655
45
Gupta P., Duplessis S., White H., Karnosky D. F., Martin F., Podila G. K..
Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and troposphere O3 .
New Phytologist.
(2005);
167
633
46
Gutiérrez-Alcalá G., Gotor C., Mejer A. J., Fricker M., Vega J. M., Romero L. C..
Glutathione biosynthesis in Arabidopsis trichome cells.
Proceedings of the National Academy of Sciences of the USA.
(2000);
97
11108-11113
47
Guzy M. R., Heath R. L..
Responses to ozone of varieties of common bean (Phaseolus vulgaris L).
New Phytologist.
(1993);
124
617-625
48
Haberer K., Grebenc T., Alexou M., Gessler A., Kraigher H., Rennenberg H..
Effects of long-term free-air ozone fumigation on d15 N and total N in Fagus sylvatica and associated mycorrhizal fungi.
Plant Biology.
(2007 a);
9
242-252
49
Haberer K., Herbinger K., Alexou M., Tausz M., Rennenberg H..
Antioxidative defence of old growth beech (Fagus sylvatica) under elevated O3 in a free air exposure system.
Plant Biology.
(2007 b);
9
215-226
50
Hänsch R., Lang C., Rennenberg H., Mendel R. R..
Significance of plant sulfite oxidase.
Plant Biology.
(2007);
9
589-595
51
Hänsch R., Lang C., Riebeseel E., Lindigkeit R., Gessler A., Rennenberg H., Mendel R. R..
Plant sulfite oxidase as novel producer of H2 O2 - combination of enzyme catalysis with a subsequent non-enzymatic reaction step.
Journal of Biological Chemistry.
(2006);
281
6884-6888
52
Harada E., Choi Y.-E., Tsuchisaka A., Obata H., Sano H..
Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium.
Journal of Plant Physiology.
(2001);
158
655-661
53
Harms K., von Ballmoos P., Brunold C., Höfgen R., Hesse H..
Expression of a bacterial serine acetyl transferase in transgenic potato plants leads to increased levels of cysteine and glutathione.
The Plant Journal.
(2000);
22
335-343
54
Hartmann T. N., Fricker M. D., Rennenberg H., Meyer A. J..
Cell-specific measurement of cytosolic glutathione in poplar leaves.
Plant, Cell and Environment.
(2003);
26
965-975
55
Hartmann T., Hönicke P., Wirtz M., Hell R., Rennenberg H., Kopriva S..
Regulation of sulfate assimilation by glutathione in poplars (Populus tremula × P. alba) of wild type and overexpressing γ-glutamylcysteine synthetase in the cytosol.
Journal of Experimental Botany.
(2004 a);
55
837-845
57
Hartmann T., Mult S., Suter M., Rennenberg H., Herschbach C..
Leaf age-dependent differences in sulfur assimilation and allocation in poplar (Populus tremula × P. alba) leaves.
Journal of Experimental Botany.
(2000);
51
1077-1088
58
Heath R. L..
Initial events in injury to plants by air pollutants.
Annual Review of Plant Physiology.
(1981);
31
395-431
59
Henmi K., Demura T., Tsuboi S., Fukuda H., Iwabuchi M., Ogawa K..
Change in the redox state of glutathione regulates differentiation of tracheary elements in Zinnia Cells and Arabidopsis roots.
Plant Cell Physiology.
(2005);
46
1757-1765
60
Henmi K., Tsuboi S., Demura T., Fukuda H., Iwabuchi M., Ogawa K..
A possible role of glutathione and glutathione disulfide in tracheary element differentiation in the cultured mesophyll cells of Zinnia elegans .
Plant Cell Physiology.
(2001);
42
673-676
61
Herbinger K., Tausz M., Wonisch A., Soja G., Sorger A., Grill D..
Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars.
Plant Physiology and Biochemistry.
(2002);
40
691-696
62
Herbinger K., Then C., Löw M., Haberer K., Alexou M., Koch N., Remele K., Heerdt C., Grill D., Rennenberg H., Häberle K. H., Matyssek R., Tausz M., Wieser G..
Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure.
Environmental Pollution.
(2005);
137
476-482
63 Herschbach C.. Sulfur nutrition of deciduous trees at different environmental growth conditions. Davidian, J.-C., Grill, D., De Kok, L. J., Stulen, H., Hawkesford, M. J., Schnug, E., and Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants: Regulation, Interaction, Signaling. Leiden; Backhuys Publishers (2003): 111-119
64
Herschbach C., Kopriva S..
Transgenic trees as tools in tree and plant physiology.
Trees.
(2002);
16
250-261
65
Herschbach C., Rennenberg H..
Influence of glutathione (GSH) on net uptake of sulfate and sulfate transport in tobacco plants.
Journal of Experimental Botany.
(1994);
45
1069-1076
66
Herschbach C., Rennenberg H..
Sulfur nutrition of deciduous trees.
Naturwissenschaften.
(2001);
88
25-36
67
Herschbach C., De Kok L. J., Rennenberg H..
Net uptake of sulfate and its transport to the shoot in spinach plants fumigated with H2 S or SO2 : does atmospheric sulfur affect the “inter-organ” regulation of sulfur nutrition.
Botanica Acta.
(1995);
108
41-46
68
Herschbach C., Jouanin L., Rennenberg H..
Overexpression of γ-glutamylcysteine synthetase, but not of glutathione synthetase, elevates glutathione allocation in the phloem of transgenic poplar trees.
Plant Cell Physiology.
(1998);
39
447-451
69
Herschbach C., van der Zalm E., Schneider A., Jouanin L., De Kok L. J., Rennenberg H..
Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2 S.
Plant Physiology.
(2000);
124
461-473
70
Hopkins L., Parmar S., Blaszczyk A., Hesse H., Hoefgen H., Hawkesford M. J..
O-Acetylserine and the regulation of expression of genes encoding components for sulphate uptake and assimilation in potato.
Plant Physiology.
(2005);
138
433-440
71
Howden R., Andersen C. R., Goldsbrough P. B., Cobbett C. S..
A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana .
Plant Physiology.
(1995 b);
107
1067-1073
72
Howden R., Goldsbrough P. B., Andersen C. R., Cobbett C. S..
Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatine deficient.
Plant Physiology.
(1995 a);
107
1059-1066
73
Jehnes S., Betz G., Bahnweg G., Haberer K., Sandermann H., Rennenberg H..
Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European beech (Fagus sylvatica L.) trees.
Plant Biology.
(2007);
9
253-264
74
Jost R., Altschmied L., Bloem E., Bogs J., Gershenzon J., Hahnel U., Hänsch R., Hartmann T., Kopriva S., Kruse C., Mendel R. R., Papenbrock J., Reichelt M., Rennenberg H., Schnug E., Schmidt A., Textor S., Tokuhisa J., Wachter A., Wirtz M., Rausch T., Hell R..
Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana .
Photosynthesis Research.
(2005);
86
491-508
75
Kangasjärvi J., Talvinen J., Utriainen M., Karjalainen R..
Plant defense systems induced by ozone.
Plant, Cell and Environment.
(1994);
17
783-794
76
Koch J. R., Creelman R. A., Eshita S. M., Seskar M., Mullet J. E., Davis K. R..
Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.
Plant Physiology.
(2000);
123
487-496
77
Kopriva S..
Regulation of sulfate assimilation in Arabidopsis and beyond.
Annals of Botany.
(2006);
97
479-495
78
Kopriva S., Koprivova A..
Plant adenosine 5′-phosphosulfate reductase: the past, the present, and the future.
Journal of Experimental Botany.
(2004);
55
1775-1783
79
Kopriva S., Rennenberg H..
Control of sulfate assimilation and glutathione synthesis: interaction with N and C metabolism.
Journal of Experimental Botany.
(2004);
55
1831-1842
80
Kopriva S., Hartmann T., Massaro G., Hönicke P., Rennenberg H..
Regulation of sulfate assimilation by nitrogen and sulfur nutrition in poplar trees.
Trees.
(2004);
18
320-326
81
Kopriva S., Jones S., Koprivova A., Suter M., von Ballmoos P., Brander K., Flücker J., Brunold C..
Influence of chilling stress on the intercellular distribution of assimilatory sulfate reduction and thiols in Zea mays .
Plant Biology.
(2001);
3
24-31
82
Kopriva S., Suter M., von Ballmoos P., Hesse H., Krähenbühl U., Rennenberg H., Brunold C..
Interaction of sulphate assimilation with carbon and nitrogen in Lemna minor .
Plant Physiology.
(2002);
130
1406-1413
83
Koprivova A., Meyer A., Schween G., Herschbach C., Reski R., Kopriva S..
Functional knockout of the adenosine 5′-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation.
Journal of Biological Chemistry.
(2002);
277
32195-32201
84
Koprivova A., Suter M., Op den Camp R., Brunold C., Kopriva S..
Regulation of sulfate assimilation by nitrogen in Arabidopsis .
Plant Physiology.
(2000);
122
737-746
85
Köstner B., Schupp R., Schulze E.-D., Rennenberg H..
Organic and inorganic sulfur transport in the xylem sap and the sulfur budget of Picea abies trees.
Tree Physiology.
(1998);
18
1-9
86 Kozlowski T. T.. Growth and Development of Trees. New York, London; Academic Press (1971) Vol. I: 213-230 Vol. II: 219-224 320-330
87 Kreuzwieser J., Herschbach C., Rennenberg H.. Sulfate uptake by mycorrhizal (Laccaria laccata) and non-mycorrhizal roots of beech (Fagus sylvatica) trees. Cram, W., De Kok, L. J., Stulen, I., Brunold, C., and Rennenberg, H., eds. Sulfur Metabolism in Higher Plants. Leiden; Backhuys Publishers (1997 b): 165-168
88
Kreuzwieser J., Herschbach C., Stulen I., Wiersema P., Vaalburg W., Rennenberg H..
Interactions of ammonium with nitrate transport processes of non-mycorrhizal beech (Fagus sylvatica L.) roots.
Journal of Experimental Botany.
(1997 a);
48
1431-1438
89
Kuzuhara Y., Isobe A., Awazuhara M., Fujiwara T., Hayashi H..
Glutathione levels in phloem sap of rice plants under sulfur deficient conditions.
Soil Science and Plant Nutrition.
(2000);
46
265-270
90
Laisk A., Kull O., Moldau H..
Ozone concentration in leaf intercellular air spaces is close to zero.
Plant Physiology.
(1989);
90
1163-1167
91 Langebartels C., Kangasjärvi J.. Ethylen and jasmonate as regulators of cell death in desease resistance. Sandermann, H., ed. Molecular Ecotoxicology of Plants. Berlin, Heidelberg; Springer Verlag (2004): 75-109
92
Langebartels C., Kerner K., Leonardi S., Schraudner M., Trost M., Heller W., Sandermann H..
Biochemical plant responses to ozone. 1. Differential induction of polyamine and ethylene biosynthesis in Tobacco.
Plant Physiology.
(1991);
95
882-889
93
Lappartient A. G., Touraine B..
Demand-driven control of root ATP sulphurylase activity and SO4
2- uptake in intact canola. The role of phloem-translocated glutathione.
Plant Physiology.
(1996);
111
147-157
94
Lappartient A. G., Vidmar J. J., Leustek T., Glass A. D. M., Touraine B..
Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound.
The Plant Journal.
(1999);
18
89-95
95
Leustek T., Martin M. N., Bick J. A., Davies J. P..
Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies.
Annual Review of Plant Physiology and Plant Molecular Biology.
(2000);
51
141-165
96
Levine R. L., Berlett B. S., Moskovitz J., Mosoni L., Stadtman E. R..
Methionine residues may protect proteins from critical oxidative damage.
Mechanisms of Ageing and Development.
(1999);
107
323-332
97
Levine R. L., Mosoni L., Berlett B. S., Stadtman E. R..
Methionine residues as endogenous antioxidants in proteins.
Proceedings of the National Academy of Sciences of the USA.
(1996);
93
15036-15040
98
Li Y., Dankher O. P., Carreira L., Smith A. P., Meagher R. B..
The shoot-specific expression of γ-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic.
Plant Physiology.
(2006);
141
288-298
99
Liu X. P., Grams T. E. E., Matyssek R., Rennenberg H..
Effects of elevated pCO2 and/or pO3 on C-, N-, and S-metabolites in the leaves of juvenile beech and spruce differ between trees grown in monoculture and mixed culture.
Plant Physiology and Biochemistry.
(2005);
43
147-154
100
Lohman K. N., Gan S. S., John M. C., Amasino R. M..
Molecular analysis of natural leaf senescence in Arabidopsis thaliana .
Physiologia Plantarum.
(1994);
92
322-328
192
Loudet O., Saliba-Colombani V., Camilleri C., Calenge F., Gaudon V., Koprivova A., North K. A., Kopriva S., Daniel-Vedele F..
Natural variation for sulfate content in Arabidopsis is higly controlled by adenosine 5′-phosphosulfate reductase.
Nature Genetics.
(2007);
101
Luwe M..
Antioxidants in the apoplast and symplast of beech (Fagus sylvatica L.) leaves: seasonal variations and responses to changing ozone concentrations in air.
Plant, Cell and Environment.
(1996);
19
321-328
102
Luwe M., Heber U..
Ozone Detoxification in the apoplasm and symplasm of spinach, broad bean and beech leaves at ambient and elevated concentrations of ozone in air.
Planta.
(1995);
197
448-455
103
Lyons T., Ollerenshaw J. H., Barnes J. D..
Impacts of ozone on Plantago major : apoplastic and symplastic antioxidant status.
New Phytologist.
(1999);
141
253-263
104
Marco F., Carrasco P..
Expression of the pea S-adenosylmethionine decarboxylase gene is involved in developmental and environmental responses.
Planta.
(2002);
214
641-647
105
Martin M. N., Tarczynski M. C., Shen B., Leustek T..
The role of 5′-adenylylsulfate reductase in controlling sulfate reduction in plants.
Photosynthesis Research.
(2005);
86
309-323
106
Matityahu I., Kachan L., Ilan I. B., Amir R..
Transgenic tobacco plants overexpressing the Met25 gene of Saccharomyces cerevisiae exhibited enhanced levels of cysteine and glutathione and increased tolerance to oxidative stress.
Amino Acids.
(2006);
30
185-194
107
Mckee I. F., Eiblmeier M., Polle A..
Enhanced ozone-tolerance in wheat grown at an elevated CO2 concentration: ozone exclusion and detoxification.
New Phytologist.
(1997);
137
275-284
108
Mehlhorn H., Tabner B. J., Wellburn A. R..
Electron-spin-resonance evidence for the formation of free radicals in plants exposed to ozone.
Physiologia Plantarum.
(1990);
79
377-383
109
Meyer A. J., Fricker M. D..
Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two-photon laser scanning microscopy.
Journal of Microscopy.
(2000);
198
174-181
110
Meyer A. J., Fricker M. D..
Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells.
Plant Physiology.
(2002);
130
1927-1937
111
Meyer A. J., May M. J., Fricker M..
Quantitative in vivo measurements of glutathione in Arabidopsis cells.
The Plant Journal.
(2001);
27
67-78
112
Millard P., Wendler R., Grassi G., Grelet G. A., Tagliavini M..
Translocation of nitrogen in the xylem of field-grown cherry and poplar trees during remobilization.
Tree Physiology.
(2006);
26
527-536
113
Müller M., Zechmann B., Zellnig G..
Ultrastructural localization of glutathione in Curcurbita pepo plants.
Protoplasma.
(2004);
223
213-219
114
Mullineaux P., Creissen G., Broadbent P., Kular B., Wellburn A..
Elucidation of the role of glutathione reductase using transgenic plants.
Biochemical Society Transaction.
(1994);
22
931-936
115
Nawy T., Lee J. Y., Colinas J., Wang J. Y., Thongrod S. C., Malamy J. E., Birnbaum K., Benfey P. N..
Transcriptional profile of the Arabidopsis root quiescent center.
Plant Cell.
(2005);
17
1908-1925
116
Noctor G., Foyer C. H..
Ascorbate and glutathione: keeping active oxygen under control.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1998);
49
249-279
117
Noctor G., Arisi A.-C. M., Jouanin L., Foyer C. H..
Manipulation of glutathione and amino acid biosynthesis in the chloroplast.
Plant Physiology.
(1998);
118
471-482
118
Noctor G., Arisi A.-C. M., Jouanin L., Foyer C. H..
Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments.
Journal of Experimental Botany.
(1999);
50
1157-1167
119
Noctor G., Gomez L., Vanacker H., Foyer C. H..
Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling.
Journal of Plant Biology.
(2002);
53
1283-1304
120
Noctor G., Strohm M., Jouanin L., Kunert K.-J., Foyer C. H., Rennenberg H..
Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase.
Plant Physiology.
(1996);
112
1071-1078
121
Ogawa K., Hatano-Iwasaki A., Yanagida M., Iwabuchi M..
Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana : mechanism of strong interaction of light intensity with flowering.
Plant Cell Physiology.
(2004);
45
1-8
122
Ogawa K., Tasaka Y., Mino M., Tanaka Y., Iwabuchi M..
Association of glutathione with flowering in Arabidopsis thaliana .
Plant Cell Physiology.
(2001);
42
524-530
123
Ohkama-Ohtsu N., Kasajima I., Fujiwara T., Naito S..
Isolation and characterization of an Arabidopsis mutant that overaccumulates O-acetyl-L‐Ser.
Plant Physiology.
(2004);
136
3209-3222
124
Olbrich M., Betz G., Gerstner E., Langebartels C., Sandermann H., Ernst D..
Transcriptome analysis of ozone-responsive genes in leaves of European beech (Fagus sylvatica L.).
Plant Biology.
(2005);
7
670-676
125
Overmyer K., Tuominen H., Kettunen R., Betz C., Langebartels C., Sandermann H., Kangasjärvi J..
Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death.
Plant Cell.
(2000);
12
1849-1862
126
Pasqualini S., Batini P., Ederli L., Porceddu A., Piccioni C., De Marchis F., Antonielli M..
Effects of short-term ozone fumigation on tobacco plants: response of the scavenging system and expression of the glutathione reductase.
Plant, Cell and Environment.
(2001);
24
245-252
127
Pilon-Smits A. A. H., Hwang S., Lytle C. M., Zhu Y., Tai J. C., Bravo R. C., Chen Y., Leustek T., Terry N..
Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance.
Plant Physiology.
(1999);
119
123-132
128
Pino M. E., Mudd J. B., Baileyserres J..
Ozone-induced alterations in the accumulation of newly synthesized proteins in leaves of maize.
Plant Physiology.
(1995);
108
777-785
129
Piquery L., Huault C., Billard J.-P..
Ascorbate-glutathione cycle and H2 O2 detoxification in elongating leaf bases of ryegrass: effect of inhibition of glutathione reductase activity on foliar regrowth.
Physiologia Plantarum.
(2002);
116
406-415
130
Polle A., Rennenberg H..
Field studies on Norway spruce trees at high altitudes. 2. Defense systems against oxidative stress in needles.
New Phytologist.
(1992);
121
635-642
131
Polle A., Eiblmeier M., Rennenberg H..
Sulfate and antioxidants in needles of Scots pine (Pinus sylvestris L.) from three SO2 -polluted field sites in eastern Germany.
New Phytologist.
(1994);
127
571-577
132
Poortinga A. M., De Kok L. J..
Sulfate and thiol levels in roots and shoot of sulfur-deprived spinach plants as affected by high pedospheric sulfate levels.
Phyton.
(2000);
40
95-102
133
Qiu Z., Chappelka A. H., Somers G. L., Lockaby B. G., Meldahl R. S..
Effects of ozone and simulated acidic precipitation on ectomycorrhizal formation on Loblolly pine seedlings.
Environmental and Experimental Botany.
(1993);
33
423-431
134
Rao M. V., Lee H., Davis K. R..
Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death.
The Plant Journal.
(2002);
32
447-456
135
Rao M. V., Lee H., Creelman R. A., Mullet J. E., Davis K. R..
Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.
Plant Cell.
(2000);
12
1633-1646
136
Rausch T., Wachter A..
Sulfur metabolism: a versatile platform for launching defence operations.
Trends in Plant Science.
(2005);
10
503-509
137
Rennenberg H..
Glutathione metabolism and possible biological roles in higher-plants.
Phytochemistry.
(1982);
21
2771-2781
138
Rennenberg H..
The significance of ectomycorrhizal fungi for sulfur nutrition of trees.
Plant and Soil.
(1999);
215
115-122
139
Rennenberg H., Schupp R., Glavac V., Jochheim H..
Xylem sap composition of beech (Fagus sylvatica L.) trees: seasonal changes in the axial distribution of sulfur compounds.
Tree Physiology.
(1994);
14
541-548
140
Rolland F., Baena-Gonzalez E., Sheen J..
Sugar sensing and signaling in plants: conserved and novel mechanisms.
Annual Review of Plant Biology.
(2006);
57
675-709
141
Romero H. M., Berlett B. S., Jensen P. J., Pell E. J., Tien M..
Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis .
Plant Physiology.
(2004);
136
3784-3794
193
Ruiz J. M., Blumwald E..
Salinity-induced glutathione synthesis in Brassica napus .
Planta.
(2002);
214
965-969
142
Saito K., Kurosawa M., Tatsuguchi K., Takagi Y., Murakoshi I..
Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase (O-acetylserine[thiol]-lyase).
Plant Physiology.
(1994);
106
887-895
143
Sánchez-Fernández R., Fricker M., Corben L. B., White N. S., Sheard N., Leaver C. J., Van Montagu M., Inzé D., May M. J..
Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control.
Proceedings of the National Academy of Sciences of the USA.
(1997);
94
2745-2750
144
Sandermann H., Ernst D., Heller W., Langebartels C..
Ozone: an abiotic elicitor of plant defence reactions.
Trends in Plant Science.
(1998);
3
47-50
145
Sasaki-Sekimoto Y., Taki N., Obayashi T., Aono M., Matsumoto F., Sakurai N., Suzuki H., Hirai M. Y., Noji M., Saito K., Masuda T., Takamiya K., Shibata D., Ohta H..
Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis .
The Plant Journal.
(2005);
44
653-668
146
Sato T., Yashima H., Ohtake N., Sueyoshi K., Akao S., Harper J. E., Ohyama T.
determination of leghemoglobin components and xylem sap composition by capillary electrophoresis in hypernodulation soybean mutants cultivated in the field.
Soil Science and Plant Nutrition.
(1998);
44
635-645
147
Schneider A., Kreuzwieser J., Schupp R., Sauter J. J., Rennenberg H..
Thiol and amino acid composition of the xylem sap of poplar trees (Populus × canadensis “robusta”).
Canadian Journal of Botany.
(1994 b);
72
347-351
148
Schneider A., Schatten T., Rennenberg H..
Exchange between phloem and xylem during long-distance transport of glutathione in spruce trees (Picea abies [Karst.] L.).
Journal of Experimental Botany.
(1994 a);
45
457-462
149 Schulte M., Herschbach C., Rennenberg H.. Long term effects of naturally elevated CO2 , H2 S and SO2 on sulfur allocation in Quercus . Cram, W. J., De Kok, L. J., Stulen, I., Brunold, C., and Rennenberg, H., eds. Sulphur Metabolism in Higher Plants. Leiden; Backhuys Publishers (1997): 289-291
150
Schulte M., von Ballmoos P., Rennenberg H., Herschbach C..
Life-long growth of Quercus ilex L. at natural CO2 springs acclimates sulfur, nitrogen and carbohydrate metabolism of the progeny to elevated p CO2 .
Plant, Cell and Environment.
(2002);
25
1715-1727
151
Schupp R., Rennenberg H..
Changes in sulfur metabolism during needle development of Norway Spruce.
Botanica Acta.
(1992);
105
180-189
152
Schupp R., Glavac V., Rennenberg H..
Thiol composition of xylem sap of beech trees.
Phytochemistry.
(1991);
30
1415-1418
153
Schupp R., Schatten T., Willenbrink J., Rennenberg H..
Long-distance transport of reduced sulphur in spruce (Picea abies L.).
Journal of Experimental Botany.
(1992);
43
1243-1250
154
Seegmüller S., Rennenberg H..
Transport of organic sulfur and nitrogen in the roots of young mycorrhizal pedunculate oak trees (Quercus robur L.).
Plant and Soil.
(2002);
242
291-297
155
Seegmüller S., Schulte M., Herschbach C., Rennenberg H..
Interactive effects of mycorrhization and elevated atmospheric CO2 on sulphur nutrition of young pedunculate oak (Quercus robur L.) trees.
Plant, Cell and Environment.
(1996);
19
418-426
156 Smith S. E., Read D. J.. Mycorrhizal Symbiosis, 2nd ed. San Diego; Academic Press (1997)
157
Solomon M., Belenghi B., Delledonne M., Menachem E., Levine A..
The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants.
Plant Cell.
(1999);
11
431-443
158
Storozhenko S., Belles-Boix E., Babiychuk E., Hérouart D., Davey M. W., Slooten L., Van Montagu M., Inzé D., Kushnir S..
γ-Glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, prozessing, and biochemical properties.
Plant Physiology.
(2002);
128
1109-1119
159
Ströher E., Dietz K.-J..
Concepts and approaches towards understanding the cellular redox proteome.
Plant Biology.
(2006);
8
407-418
160
Strohm M., Eiblmeier M., Langebartels C., Jouanin L., Polle A., Sandermann H., Rennenberg H..
Responses of antioxidative systems to acute ozone stress in transgenic poplar (Populus tremula × P. alba) over-expressing glutathione synthetase or glutathione reductase.
Trees.
(2002);
16
262-273
161
Strohm M., Jouanin L., Kunert K.-J., Pruvost C., Polle A., Foyer C. H., Rennenberg H..
Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase.
The Plant Journal.
(1995);
7
141-145
162
Suter M., Tschanz A., Brunold C..
Adenosine 5′-phosphosulfate sulfotransferase from norway spruce - biochemical and physiological properties.
Botanica Acta.
(1992);
105
190-196
163
Tabor C. W., Tabor H..
Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase.
Advances in Enzymology and Related Areas of Molecular Biology.
(1984);
56
251-282
164
Tamaoki M., Matsuyama T., Kanna M., Nakajima N., Kubo A., Aono M., Saji H..
Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis.
Planta.
(2003);
216
552-560
165
Taulavuori E., Taulavuori K., Laine K..
seasonality of glutathione dynamics in Scots Pine and Bilberry.
Plant Biology.
(1999);
1
187-191
166
Taulavuori E., Taulavuori K., Laine K., Pakonen T., Saari E..
Winter hardening and glutathione status in the bilberry (Vaccinium myrtillus) in response to trace gases (CO2 , O3 ) and nitrogen fertilization.
Physiologia Plantarum.
(1997);
101
192-198
167
Tausz M., Olszyk D. M., Monschein S., Tingey D. T..
Combined effects of CO2 and O3 on antioxidative and photoprotective defense systems in needles of ponderosa pine.
Biologia Plantarum.
(2004 a);
48
543-548
168
Tausz M., Šircelj H., Grill D..
The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?.
Journal of Experimental Botany.
(2004 b);
55
1955-1962
169
Teyker R. H., Galerani P. R., Nafziger E. D..
Analysis of xylem exudate by ion chromatography - influence of nitrogen and residue managment on corn exudate composition.
Communications in Soil Science and Plant Analysis.
(1991);
22
785-793
170
Tingey D. T., Standley C., Field R. W..
Stress ethylene evolution - measure of ozone effects on plants.
Atmospheric Environment.
(1976);
10
969-974
171
Tsakraklides G., Martin M., Chalam R., Tarczynski M. C., Schmidt A., Leustek T..
Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5′-adenylylsulfate reductase from Pseudomonas aeruginosa .
The Plant Journal.
(2002);
32
879-889
172
Tschanz A., Landolt W., Bleuler P., Brunold C..
Effect of SO2 on the activity of adenosine 5′-phosphosulfate sulfotransferase from spruce trees (Picea abies) in fumigation chambers and under field conditions.
Physiologia Plantarum.
(1986);
67
235-241
173
Vahala J., Keinanen M., Schutzendubel A., Polle A., Kangasjarvi J..
Differential effects of elevated ozone on two hybrid aspen genotypes predisposed to chronic ozone fumigation. Role of ethylene and salicylic acid.
Plant Physiology.
(2003);
132
196-205
174
Vauclare P., Kopriva S., Fell D., Suter M., Sticher L., von Ballmoos P., Krähenbühl U., Op den Camp R., Brunold C..
Flux control of sulfate assimilation in Arabidopsis thaliana : adenosine 5′-phosphosulfate reductase is more susceptible to negative control by thiols than ATP sulphurylase.
The Plant Journal.
(2002);
31
729-740
175
Vernoux T., Wilson R. C., Seeley K. A., Reichheld J.-P., Muroy S., Brown S., Maughan S. C., Cobbett C. S., Van Montagu M., Inzé D., May M. J., Sung Z. R..
The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development.
Plant Cell.
(2000);
12
97-109
176
Vitousek P. M., Howarth R. W..
Nitrogen limitation on land and in the sea - how can it occur?.
Biogeochemistry.
(1991);
13
87-115
177
Watanabe T., Seo S., Sakai S..
Wound-induced expression of a gene for 1-aminocyclopropane-1-carboxylate synthase and ethylene production are regulated by both reactive oxygen species and jasmonic acid in Cucurbita maxima .
Plant Physiology and Biochemistry.
(2001);
39
121-127
178
Westerman S., De Kok L. J., Stuiver C. E. E., Stulen I..
Interaction between metabolism of atmospheric H2 S in the shoot and sulphate uptake by the roots of curly kale (Brassica oleracea) .
Physiologia Plantarum.
(2000);
109
443-449
179
Westerman S., Stulen I., Suter M., Brunold C., De Kok L. J..
Atmospheric H2 S as sulfur source for Brassica oleracea : consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway.
Plant Physiology and Biochemistry.
(2001);
39
425-432
180
Wieser G., Tausz M., Wonisch A., Havranek W. M..
Free radical scavengers and photosynthetic pigments in Pinus cembra L. needles as affected by ozone exposure.
Biologia Plantarum.
(2001);
44
225-232
181
Wittstock U., Halkier B. A..
Glucosinolate research in the Arabidopsis era.
Trends in Plant Science.
(2002);
7
263-270
182
Xiang C., Werner B. L., Christensen E. M., Oliver D. J..
The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels.
Plant Physiology.
(2001);
126
564-574
183
Yang S. F., Hoffman N. E..
Ethylene biosynthesis and its regulation in higher plants.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1984);
35
155-189
184
Youssefian S., Nakamura M., Sano H..
Tobacco plants transformed with the O-acetylserine(thiol) lyase gene of wheat are resistant to toxic levels of hydrogen sulphide gas.
The Plant Journal.
(1993);
4
759-769
185
Youssefian S., Nakamura M., Orudgev E., Kondo N..
Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine(thiol) lyase modifies plant responses to oxidative stress.
Plant Physiology.
(2001);
126
1001-1011
186
Yu Y. B., Yang S. F..
Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion.
Plant Physiology.
(1979);
64
1074-1077
187
Yun S. C., Laurence J. A..
The response of clones of Populus tremuloides differing in sensitivity to ozone in the field.
New Phytologist.
(1999 a);
141
411-421
188
Yun S. C., Laurence J. A..
The response of sensitive and tolerant clones of Populus tremuloides to dynamic ozone exposure under controlled environmental conditions.
New Phytologist.
(1999 b);
143
305-313
189
Zhu Y. L., Pilon-Smits E. A. H., Jouanin L., Terry N..
Overexpression of glutathione synthetase in indian mustard enhanced cadmium accumulation and tolerance.
Plant Physiology.
(1999 b);
119
73-79
190
Zhu Y. L., Pilon-Smits E. A. H., Tarun A. S., Weber S. U., Jouanin L., Terry N..
Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase.
Plant Physiology.
(1999 a);
121
1169-1177
191
Zimmermann P., Hennig L., Gruissem W..
Gene-expression analysis and network discovery using Genevestigator.
Trends in Plant Science.
(2005);
10
407-409
1 Dedicated to Prof. Dr. L. Bergmann at the occasion of his 80th birthday.
H. Rennenberg
Institut für Forstbotanik und Baumphysiologie Professur für Baumphysiologie Universität Freiburg
Georges-Köhler-Allee 053/054
79110 Freiburg
Germany
Email: heinz.rennenberg@ctp.uni-freiburg.de
Guest Editor: T. Rausch