Abstract
Three types of hemoglobins exist in higher plants, symbiotic, non-symbiotic, and truncated hemoglobins. Symbiotic (class II) hemoglobins play a role in oxygen supply to intracellular nitrogen-fixing symbionts in legume root nodules, and in one case (Parasponia sp.), a non-symbiotic (class I) hemoglobin has been recruited for this function. Here we report the induction of a host gene, dgtrHb1 , encoding a truncated hemoglobin in Frankia -induced nodules of the actinorhizal plant Datisca glomerata . Induction takes place specifically in cells infected by the microsymbiont, prior to the onset of bacterial nitrogen fixation. A bacterial gene (Frankia trHbO) encoding a truncated hemoglobin with O2 -binding kinetics suitable for the facilitation of O2 diffusion ([Tjepkema et al., 2002 ]) is also expressed in symbiosis. Nodule oximetry confirms the presence of a molecule that binds oxygen reversibly in D. glomerata nodules, but indicates a low overall hemoglobin concentration suggesting a local function. Frankia TrHbO is likely to be responsible for this activity. The function of the D. glomerata truncated hemoglobin is unknown; a possible role in nitric oxide detoxification is suggested.
Key words
Nitrogen-fixing root nodules - leghemoglobin - hemoglobin - nitric oxide -
glb3
-
trHb .
References
1
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J..
Basic local alignment search tool.
Journal of Molecular Biology.
(1990);
215
403-410
2
Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J..
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Research.
(1997);
25
3389-3402
3
Andersson C. R., Llewellyn D. J., Peacock W. J., Dennis E. S..
Cell-specific expression of the promoters of two nonlegume hemoglobin genes in a transgenic legume, Lotus corniculatus .
Plant Physiology.
(1997);
113
45-57
4
Appleby C. A..
Leghemoglobin and Rhizobium respiration.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1984);
35
443-478
5
Appleby C. A..
The origin and functions of haemoglobin in plants.
Science Progress.
(1992);
76
365-398
6
Barnett M. J., Fisher R. F., Jones T., Komp C., Abola A. P., Barloy-Hubler F., Bowser L., Capela D., Galibert F., Gouzy J., Gurjal M., Hong A., Huizar L., Hyman R. W., Kahn D., Kahn M. L., Kalman S., Keating D. H., Palm C., Peck M. C., Surzycki R., Wells D. H., Yeh K. C., Davis R. W., Federspiel N. A., Long S. R..
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Proceedings of the National Academy of Sciences of the USA.
(2001);
98
9883-9888
7
Beckwith J., Tjepkema J. D., Cashon R. E., Schwintzer C. R., Tisa L. S..
Hemoglobin in five genetically diverse Frankia strains.
Canadian Journal of Microbiology.
(2002);
48
1048-1055
8
Berg R. H., McDowell L..
Endophyte differentiation in Casuarina actinorhizae.
Protoplasma.
(1987);
136
104-117
9
Berg R. H., McDowell L..
Cytochemistry of the wall of infected Casuarina actinorhizae.
Canadian Journal of Botany.
(1988);
66
2038-2047
10
Berg R. H., Langenstein B., Silvester W. B..
Development in the D. glomerata-Coriaria nodule type.
Canadian Journal of Botany.
(1999);
77
1334-1350
11
Berry A. M., Harriott O. T., Moreau R. A., Osman S. F., Benson D. R., Jones A. D..
Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase.
Proceedings of the National Academy of Sciences of the USA.
(1993);
90
6091-6094
12
Cheng J., Hipkin C. R., Gallon J. R..
Effects of inorganic nitrogen compounds on the activity and synthesis of nitrogenase in Gloeothece (Nägeli) sp. ATCC 27152.
New Phytologist.
(1999);
141
61-70
13
Clawson M. L., Bourret A., Benson D. R..
Assessing the phylogeny of Frankia- actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences.
Molecular Phylogenetics and Evolution.
(2004);
31
131-138
14
Corpet F., Gouzy J., Kahn D..
The ProDom database of protein domain families.
Nucleic Acids Research.
(1998);
26
323-326
15
Correa-Aragunde N., Graziano M., Lamattina L..
Nitric oxide plays a central role in determining lateral root development in tomato.
Planta.
(2004);
218
900-905
16
Cueto M., Hernández-Perera O., Martín R., Bentura M. L., Rodrigo J., Lamas S., Golvano M. P..
Presence of nitric oxide synthase activity in roots and root nodules of Lupinus albus.
.
FEBS Letters.
(1996);
398
159-164
17
Denison R. F., Layzell D. B..
Measurement of legume nodule respiration and O2 permeability by noninvasive spectrophotometry of leghemoglobin.
Plant Physiology.
(1991);
96
137-143
18
Denison R. F., Hunt S., Layzell D. B..
Nitrogenase activity, nodule respiration, and O2 permeability following detopping of alfalfa and birdsfoot trefoil.
Plant Physiology.
(1992 a);
98
894-900
19
Denison R. F., Witty J. F., Minchin F. R..
Reversible O2 inhibition of nitrogenase activity in attached soybean nodules.
Plant Physiology.
(1992 b);
100
1863-1868
20
Dordas C., Rivoal J., Hill R. D..
Plant haemoglobins, nitric oxide and hypoxic stress.
Annals of Botany.
(2003);
91
173-178
21
Elvers K. T., Wu G., Gilberthorpe N. J., Poole R. K., Park S. F..
Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli .
Journal of Bacteriology.
(2004);
186
5332-5341
22
Fabozzi G., Ascenzi P., Renzi S. D., Visca P..
Truncated hemoglobin GlbO from Mycobacterium leprae alleviates nitric oxide toxicity.
Microbial Pathogenesis.
(2006);
40
211-220
23
Ferguson B. J., Mathesius U..
Signaling interactions during nodule development.
Journal of Plant Growth Regulation.
(2004);
22
47-72
24
Galibert F., Finan T. M., Long S. R., Pühler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A., Boistard P., Bothe G., Boutry M., Bowser L., Buhrmester J., Cadieu E., Capela D., Chain P., Cowie A., Davis R. W., Dreano S., Federspiel N. A., Fisher R. F., Gloux S., Godrie T., Goffeau A., Golding B., Gouzy J., Gurjal M., Hernandez-Lucas I., Hong A., Huizar L., Hyman R. W., Jones T., Kahn D., Kahn M. L., Kalman S., Keating D. H., Kiss E., Komp C., Lelaure V., Masuy D., Palm C., Peck M. C., Pohl T. M., Portetelle D., Purnelle B., Ramsperger U., Surzycki R., Thebault P., Vandenbol M., Vorholter F. J., Weidner S., Wells D. H., Wong K., Yeh K. C., Batut J..
The composite genome of the legume symbiont Sinorhizobium meliloti.
.
Science.
(2001);
293
668-672
25
Gherbi H., Duhoux E., Franche C., Pawlowski K., Berry A. M., Bogusz D..
Cloning of a full-length symbiotic hemoglobin cDNA and in situ localization of the corresponding mRNA in Casuarina glauca root nodule.
Physiologia Plantarum.
(1997);
99
608-616
26
Gish W., States D. J..
Identification of protein coding regions by database similarity search.
Nature Genetics.
(1993);
3
266-272
27
Guo F. Q., Okamoto M., Crawford N. M..
Identification of a plant nitric oxide synthase gene involved in hormonal signaling.
Science.
(2003);
302
100-103
28
Hafeez F., Akkermans A. D. L., Chaudhary A. H..
Observations on the ultrastructure of Frankia sp. in root nodules of Datisca cannabina L.
Plant and Soil.
(1984);
79
383-402
29
Harris S., Silvester W. B..
Acetylene-induced and argon-induced declines in nitrogenase activity in Coriaria arborea.
.
Soil Biology and Biochemistry.
(1994);
26
641-648
30
Herold S., Puppo A..
Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules?.
Journal of Biological Inorganic Chemistry.
(2005);
10
935-945
31 Hoagland D. R., Arnon D. T.. The water-culture method for growing plants without soil. California Agriculture Experimental Station Circular 347. (1938)
32
Hunt P. W., Watts R. A., Trevaskis B., Llewelyn D. J., Burnell J., Dennis E. S., Peacock W. J..
Expression and evolution of functionally distinct haemoglobin genes in plants.
Plant Molecular Biology.
(2001);
47
677-692
33
Hunt P. W., Klok E. J., Trevaskis B., Watts R. A., Ellis M. H., Peacock W. J., Dennis E. S..
Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana.
.
Proceedings of the National Academy of Sciences of the USA.
(2002);
99
17197-17202
34 Jackson D..
In situ hybridization in plants. Bowles, D. J., Gurr, S. F., and McPherson, M., eds. Molecular Plant Pathology: A Practical Approach. Oxford, UK; Oxford University Press (1991): 163-174
35
Jacobsen-Lyon K., Jensen E. Ø., Jorgensen J. E., Marcker K. A., Peacock W. J., Dennis E. S..
Symbiotic hemoglobin genes of Casuarina glauca.
Plant Cell.
(1995);
7
213-223
36 Johansen D. A.. Plant Microtechnique. London, UK; McGraw-Hill Book Company (1940)
37
Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S., Watanabe A., Idesawa K., Ishikawa A., Kawashima K., Kimura T., Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A., Mochizuki Y., Nakayama S., Nakazaki N., Shimpo S., Sugimoto M., Takeuchi C., Yamada M., Tabata S..
Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (supplement).
DNA Research.
(2000);
7
381-406
38
Kaneko T., Nakamura Y., Sato S., Minamisawa K., Uchiumi T., Sasamoto S., Watanabe A., Idesawa K., Iriguchi M., Kawashima K., Kohara M., Matsumoto M., Shimpo S., Tsuruoka H., Wada T., Yamada M., Tabata S..
Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 (supplement).
DNA Research.
(2002);
9
225-256
39
Kleemann G., Alskog G., Berry A. M., Huss-Danell K..
Lipid composition and nitrogenase activity of symbiotic Frankia (Alnus incana) in response to different oxygen concentrations.
Protoplasma.
(1994);
183
107-115
40
Kouchi H., Hata S..
Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development.
Molecular and General Genetics.
(1993);
238
106-119
41
Lamattina L., Garcia-Mata C., Graziano M., Pagnussat G..
Nitric oxide: the versatility of an extensive signal molecule.
Annual Review of Plant Biology.
(2003);
54
109-136
42
Lee H. S., Kim H. J., An C. S..
Cloning and expression analysis of 2-on-2 hemoglobin from soybean.
Journal of Plant Biology.
(2004);
47
92-98
43
Liu C., He Y., Chang Z..
Truncated hemoglobin o of Mycobacterium tuberculosis : the oligomeric state change and the interaction with membrane components.
Biochemical and Biophysical Research Communications.
(2004);
316
1163-1172
44
Long J. A., Moan E. I., Medford J. I., Barton M. K..
A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis.
.
Nature.
(1996);
379
66-69
45
Meesters T. M., van Vliet W. M., Akkermans A. D. L..
Nitrogenase is restricted to the vesicles in Frankia strain EANlpec.
Physiologia Plantarum.
(1987);
70
267-271
46
Mesa S., de Dios Alché J., Bedmar E., Delgado M. J..
Expression of nir, nor and nos denitrification genes from Bradyrhizobum japonicum in soybean root nodules.
Physiologia Plantarum.
(2004);
120
205-211
47
Meyer J..
Comparison of carbon monoxide, nitric oxide, and nitrite as inhibitors of the nitrogenase from Clostridium pasteurianum .
Archives of Biochemistry and Biophysics.
(1981);
210
246-256
48
Milani M., Pesce A., Ouellet H., Guertin M., Bolognesi M..
Truncated hemoglobins and nitric oxide action.
IUBMB Life.
(2003);
55
623-627
49
Minchin F. R..
Regulation of oxygen diffusion in legume nodules.
Soil Biology and Biochemistry.
(1997);
29
881-888
50
Nathan C., Shiloh M. U..
Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens.
Proceedings of the National Academy of Sciences of the USA.
(2000);
97
8841-8848
51
Niemann J. M., Tjepkema J. D., Tisa L. S..
Identification of the truncated hemoglobin gene in Frankia.
.
Symbiosis.
(2005);
39
91-95
52
Okubara P. A., Pawlowski K., Murphy T. M., Berry A. M..
Symbiotic root nodules of the actinorhizal plant Datisca glomerata express rubisco activase mRNA.
Plant Physiology.
(1999);
120
411-420
53
Ouellet H., Ouellet Y., Richard C., Labarre M., Wittenberg B., Wittenberg J., Guertin M..
Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide.
Proceedings of the National Academy of Sciences of the USA.
(2002);
99
5902-5907
54
Pagnussat G. C., Simontacchi M., Puntarulo S., Lamattina L..
Nitric oxide is required for root organogenesis.
Plant Physiology.
(2002);
129
954-956
55
Parsons R., Silvester W. B., Harris S., Gruiters W. T. M., Bullivant S..
Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase.
Plant Physiology.
(1987);
83
728-731
56
Pathania R., Navani N. K., Rajamohan G., Dikshit K. L..
Mycobacterium tuberculosis hemoglobin HbO associates with membranes and stimulates cellular respiration of recombinant Escherichia coli .
Journal of Biological Chemistry.
(2002);
277
15293-15302
57 Pawlowski K., Kunze R., de Vries S., Bisseling T.. Isolation of total, poly(A) and polysomal RNA from plant tissues. Gelvin, S. B. and Schilperoort, R. A., eds. Plant Molecular Biology Manual, D5, 2nd ed. Dordrecht, The Netherlands; Kluwer Academic Publishers (1994): 1-13
58
Perazzolli M., Romero-Puertas M. C., Delledonne M..
Modulation of nitric oxide bioactivity by plant haemoglobins.
Journal of Experimental Botany.
(2006);
57
479-488
59 Sambrook J., Fritsch E. F., Maniatis T.. Molecular Cloning: A Laboratory Manual, 2nd ed. Plainview, N.Y.; Cold Spring Harbor Laboratory (1989)
60
Sasakura F., Uchiumi T., Shimoda Y., Suzuki A., Takenouchi K., Higashi S., Abe M..
A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide.
Molecular Plant-Microbe Interactions.
(2006);
19
441-450
61
Schwintzer C. R., Tjepkema J. D..
Effect of oxygen concentration on growth and hemoglobin production in Frankia.
.
Symbiosis.
(2005);
39
77-82
62
Seregélyes C., Dudits D..
Phytoglobins and nitric oxide: new partners in an old signalling system in plants.
Acta Biologica Hungarica.
(2003);
54
15-25
63
Shimoda Y., Nagata M., Suzuki A., Abe M., Sato S., Kato T., Tabata S., Higashi S., Uchiumi T..
Symbiotic Rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus.
.
Plant and Cell Physiology.
(2005);
46
99-107
64 Silvester W. B., Harris S. L., Tjepkema J. D.. Oxygen regulation and hemoglobin. Schwintzer, C. R. and Tjepkema, J. D., eds. The Biology of Frankia and Actinorhizal Plants. San Diego, CA; Academic Press Inc. (1990): 157-193
65
Silvester W. B., Langenstein B., Berg R. H..
Do mitochondria provide the oxygen diffusion barrier in root nodules of Coriaria and Datisca ?.
Canadian Journal of Botany.
(1999);
77
1358-1366
66
Takagi T., Iwaasa H., Yuasa H., Shikama K., Takemasa T., Watanabe Y..
Primary structure of Tetrahymena hemoglobins.
Biochimica et Biophysica Acta.
(1993);
1173
75-78
67
Taylor E. R., Nie X. Z., MacGregor A. W., Hill R. D..
A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions.
Plant Molecular Biology.
(1994);
24
853-862
69
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Nucleic Acids Research.
(1997);
25
4876-4882
68 Tjepkema J. D., Pathirana M. S., Zeng S.. The gas diffusion pathway and hemoglobin content in actinorhizal nodules. Bothe, H., de Bruijn, F. J., and Newton, W. E., eds. Nitrogen Fixation: Hundred Years After. Stuttgart, New York; Gustav Fischer (1988 a): 701
70 Tjepkema J. D.. Oxygen relations in leguminous and actinorhizal nodules. Gordon, J. C., Wheeler, C. T., and Perry, D. A., eds. Symbiotic Nitrogen Fixation in the Management of Temperate Forests. Corvallis, OR; For. Res. Lab., Oregon State Univ. (1979): 175-186
71
Tjepkema J. D., Asa D. J..
Total and carbon monoxide-reactive heme content of actinorhizal nodules and the roots of some non-nodulated plants.
Plant and Soil.
(1987);
100
225-236
72
Tjepkema J. D., Cashon R. E., Beckwich J., Schwintzer C. R..
Hemoglobin in Frankia, a nitrogen-fixing actinomycete.
Applied and Environmental Microbiology.
(2002);
68
2629-2631
73
Tjepkema J. D., Schwintzer C. R., Monz C. A..
Time course of acetylene reduction in nodules of five actinorhizal genera.
Plant Physiology.
(1988 b);
86
581-583
74
Tjepkema J. D..
Hemoglobins in the nitrogen-fixing root nodules of actinorhizal plants.
Canadian Journal of Botany.
(1983);
61
2924-2929
75
Tjepkema J. D., Du G., Schwintzer C. R..
Response of respiration and nitrogenase activity in D. glomerata (Presl.) Baill. to changes in pO2 .
Canadian Journal of Botany.
(1999);
77
1367-1372
76
Trevaskis B., Watts R. A., Andersson C. R., Llewellyn D. J., Hargrove M. S., Olson J. S., Dennis E. S., Peacock W. J..
Two hemoglobin genes in Arabidopsis thaliana : the evolutionary origins of leghemoglobins.
Proceedings of the National Academy of Sciences of the USA.
(1997);
94
12230-12234
77
Trinchant J.-C., Rigaud J..
Nitrite and nitric oxide as inhibitors of nitrogenase from soybean bacteroids.
Applied and Environmental Microbiology.
(1982);
44
1385-1388
78
Van de Wiel C., Scheres B., Franssen H., van Lierop M.-J., van Lammeren A., van Kammen A., Bisseling T..
The early nodulin transcript ENOD2 is located in the nodule parenchyma inner cortex of pea and soybean root nodules.
The EMBO Journal.
(1990);
9
1-8
79
Vieweg M. F., Hohnjec N., Küster H..
Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula.
.
Planta.
(2005);
220
757-766
80
Watts R. A., Hunt P. W., Hvitved A. N., Hargrove M. S., Peacock W. J., Dennis E. S..
A hemoglobin from plants homologous to truncated hemoglobins of microorganisms.
Proceedings of the National Academy of Sciences of the USA.
(2001);
98
10119-10124
81
Wendehenne D., Pugin A., Klessig D. F., Durner J..
Nitric oxide: comparative synthesis and signaling in animal and plant cells.
Trends in Plant Science.
(2001);
6
177-183
82
Wittenberg J. B., Bolognesi M., Wittenberg B. A., Guertin M..
Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants.
Journal of Biological Chemistry.
(2002);
277
871-874
83
Wittenberg J. B., Wittenberg B. A..
Mechanisms of cytoplasmic hemoglobin and myoglobin function.
Annual Review of Biophysics and Biophysical Chemistry.
(1990);
19
217-241
84
Zeng S., Tjepkema J. D., Berg R. H..
Gas diffusion pathway in nodules of Casuarina cunninghamiana .
Plant and Soil.
(1989);
118
119-124
K. Pawlowski
Albrecht von Haller Institute for Plant Sciences Department of Plant Biochemistry Göttingen University
37077 Göttingen
Germany
Email: pawlowski@botan.su.se
Editor: T. Bisseling