Int J Sports Med 2008; 29(4): 336-342
DOI: 10.1055/s-2007-965340
Nutrition

© Georg Thieme Verlag KG Stuttgart · New York

Meal Frequency of Pre-Exercise Carbohydrate Feedings

C. Chryssanthopoulos1 , A. Petridou2 , M. Maridaki1 , V. Mougios2
  • 1Physical Education and Sports Science, University of Athens, Athens, Greece
  • 2Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
Further Information

Publication History

accepted after revision February 24, 2007

Publication Date:
13 September 2007 (online)

Abstract

This study compared the effect of single and multiple carbohydrate feedings before exercise on biochemical and physiological responses during exercise. Eight males performed 3 runs for 1 h at 70 % V·O2max after consuming a meal containing 2.5 g carbohydrate per kg body mass in a single dose 3 h before exercise (SF), the same meal in 5 equal doses at 3, 2.5, 2, 1.5, and 1 h before exercise (MF), or a liquid placebo 3 h before exercise (P). RER and carbohydrate oxidation rates were higher in SF and MF compared to P trials, but there was no difference between SF and MF trials. Pre-exercise insulin was 2.0- and 3.4- fold higher in SF and MF, respectively, compared to P, and 1.7-fold higher in MF compared to SF. Glycerol and NEFA were higher in P compared to SF and MF trials before and at the end of exercise. In conclusion, a carbohydrate meal containing 2.5 g · kg-1 ingested in doses over 3 h before running produced higher hyperinsulinemia pre-exercise than that produced when the meal was consumed in a single dose. Nevertheless, estimated carbohydrate utilization and adipose tissue lipolysis during exercise after multiple feedings seemed to be as high as after a single feeding.

References

  • 1 Ahlborg G, Bjorkman O. Carbohydrate utilization by exercising muscle following preexercise glucose ingestion.  Clin Physiol. 1987;  7 181-195
  • 2 Beynen A C, Katan M B. Rapid sampling and long-term storage of subcutaneous adipose-tissue biopsies for determination of fatty acid composition.  Am J Clin Nutr. 1985;  42 317-322
  • 3 Borg G AV. Perceived exertion: a note on “history” and methods.  Med Sci Sports Exerc. 1973;  5 90-93
  • 4 Burke L M, Collier G R, Davis P G, Fricker P A, Sanigorski A J, Hargreaves M. Muscle glycogen storage after prolonged exercise: effect of the frequency of carbohydrate feedings.  Am J Clin Nutr. 1996;  64 115-119
  • 5 Chryssanthopoulos C, Williams C, Nowitz A, Kotsiopoulou C, Vleck V. The effect of a high carbohydrate meal on endurance running capacity.  Int J Sport Nutr. 2002;  12 157-171
  • 6 Costill D L, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise.  J Appl Physiol. 1977;  43 695-699
  • 7 Coyle E F, Coggan A R, Hemmert M K, Lowe R C, Walters T J. Substrate usage during prolonged exercise following a preexercise meal.  J Appl Physiol. 1985;  59 429-433
  • 8 Febbraio M A, Keenan J, Angus D J, Campbell S E, Garnham A P. Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index.  J Appl Physiol. 2000;  89 1845-1851
  • 9 Foster C, Costill D L, Fink W J. Effects of preexercise feedings on endurance performance.  Med Sci Sports. 1979;  11 1-5
  • 10 Foster-Powell K, Holt S HA, Brand-Miller J C. International table of glycemic index and glycemic load values: 2002.  Am J Clin Nutr. 2002;  76 5-56
  • 11 Halvorsen F-A, Ritland S. Gastrointestinal problems related to endurance event training.  Sports Med. 1992;  14 157-163
  • 12 Holland B, Welch A A, Unwin I D, Buss D H, Paul A A, Southgate D AT. McCance and Widdowson's the Composition of Foods. Cambridge; Royal Society of Chemistry 1991
  • 13 Horowitz J F, Mora-Rodriguez R, Byerley L O, Coyle E F. Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise.  Am J Physiol. 1997;  273 E768-E775
  • 14 Jenkins D JA, Ocana A, Jenkins A L, Wolever T MS, Vuksan V, Katzman L, Hollands M, Greenberg G, Corey P, Patten R, Wong G, Josse R G. Metabolic advantages of spreading the nutrient load: effects of increased meal frequency in non-insulin-dependent diabetes.  Am J Clin Nutr. 1992;  55 461-467
  • 15 Jenkins D JA, Wolever T MS, Ocana A M, Vuksan V, Cunnane S C, Jenkins M, Wong G S, Singer W, Bloom S R, Blendis L M, Josse R G. Metabolic effects of reducing rate of glucose ingestion by single bolus versus continuous sipping.  Diabetes. 1990;  39 775-781
  • 16 Jenkins D JA, Wolever T MS, Taylor R H, Barker H, Fielden H, Baldwin J M, Bowling A C, Newman H C, Jenkins A L, Goff D V. Glycemic index foods: a physiological basis for carbohydrate exchange.  Am J Clin Nutr. 1981;  34 362-366
  • 17 Jentjens R L, Cale C, Gutch C, Jeukendrup A E. Effects of pre-exercise ingestion of differing amounts of carbohydrate on subsequent metabolism and cycling performance.  Eur J Appl Physiol. 2003;  88 444-452
  • 18 Kokalas N, Petridou A, Nikolaidis M G, Mougios V. Effect of aerobic exercise on lipemia and its fatty acid profile after a meal of moderate fat content in eumenorrheic women.  Brit J Nutr. 2005;  94 698-704
  • 19 Mougios V, Ring S, Petridou A, Nikolaidis M G. Duration of coffee- and exercise-induced changes in the fatty acid profile of human serum.  J Appl Physiol. 2003;  94 476-484
  • 20 Nilsson L H, Hultman E. Liver glycogen in man - the effect of total starvation or a carbohydrate-poor diet followed by carbohydrate refeeding.  Scand J Clin Lab Invest. 1973;  32 325-330
  • 21 Peronnet F, Massicotte D. Table of nonprotein respiratory quotient : an update.  Can J Sport Sci. 1991;  16 23-29
  • 22 Sherman W M, Peden M C, Wright D A. Carbohydrate feedings 1 h before exercise improves cycling performance.  Am J Clin Nutr. 1991;  54 866-870
  • 23 Short K R, Sheffield-Moore M, Costill D L. Glycemic and insulinemic responses to multiple preexercise carbohydrate feedings.  Int J Sport Nutr. 1997;  7 128-137
  • 24 Siu P M, Wong S HS, Morris J G, Lam C W, Chung P K, Chung S. Effect of frequency of carbohydrate feedings on recovery and subsequent endurance run.  Med Sci Sports Exerc. 2004;  36 315-323
  • 25 Thomas D E, Brotherhood J, Brand J C. Carbohydrate feeding before exercise: effect of glycemic index.  Int J Sports Med. 1991;  12 180-186
  • 26 Wee S L, Williams C, Gray S, Horabin J. Influence of high and low glycemic index meals on endurance running capacity.  Med Sci Sports Exerc. 1999;  31 393-399
  • 27 Wee S L, Williams C, Tsintzas K, Boobis L. Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise.  J Appl Physiol. 2005;  99 707-714
  • 28 Williams C, Nute M G, Broadbank L, Vinall S. Influence of fluid intake on endurance running performance. A comparison between water, glucose and fructose solutions.  Eur J Appl Physiol. 1990;  60 112-119
  • 29 Wolever T MS, Jenkins D JA, Jenkins A L, Josse R G. The glycemic index: methodology and clinical implications.  Am J Clin Nutr. 1991;  54 846-854
  • 30 Wolever T MS. Metabolic effects of continuous feeding.  Metabolism. 1990;  39 947-951
  • 31 Wu C L, Nicholas C, Williams C, Took A, Hardy L. The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise.  Br J Nutr. 2003;  90 1049-1056
  • 32 Wu C L, Williams C. A low glycemic index meal before exercise improves endurance running capacity in men.  Int J Sport Nutr Exerc Metab. 2006;  16 510-527

Dr. Costas Chryssanthopoulos

Physical Education and Sports Science
University of Athens

41 Ethnikis Antistasis Street, Dafni

172 37 Athens

Greece

Phone: +30 21 07 27 60 43

Fax: +30 21 07 27 60 43

Email: chryssan@phed.uoa.gr