Int J Sports Med 2008; 29(4): 307-315
DOI: 10.1055/s-2007-965357
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Predicting Intermittent Running Performance: Critical Velocity versus Endurance Index

M. Buchheit1 , 2 , P. B. Laursen3 , G. P. Millet4 , F. Pactat5 , S. Ahmaidi1
  • 1Laboratoire de Recherche Adaptations Réadaptations, Faculté des Sciences du Sport, Amiens, France
  • 2Faculté de Medecine, Institut de Physiologie, Strasbourg, France
  • 3School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, Australia
  • 4Academy for Sports Excellence, ASPIRE, Doha, Qatar
  • 5UFRSTAPS, Groupe d 'Analyse et d'Optimisation de la Performance, Strasbourg, France
Further Information

Publication History

accepted after revision March 9, 2007

Publication Date:
18 September 2007 (online)

Abstract

The aim of the present study was to examine the ability of the critical velocity (CV) and the endurance index (EI) to assess endurance performance during intermittent exercise. Thirteen subjects performed two intermittent runs: 15-s runs intersected with 15 s of passive recovery (15/15) and 30-s runs with 30-s rest (30/30). Runs were performed until exhaustion at three intensities (100, 95 and 90 % of the speed reached at the end of the 30 - 15 intermittent fitness test, VIFT) to calculate i) CV from the slope of the linear relationship between the total covered distance and exhaustion time (ET) (iCV); ii) anaerobic distance capacity from the y-intercept of the distance/duration relationship (iADC); and iii) EI from the relationship between the fraction of VIFT at which the runs were performed and the log-transformed ET (iEI). Anaerobic capacity was indirectly assessed by the final velocity achieved during the Maximal Anaerobic Running Test (VMART). ET was longer for 15/15 than for 30/30 runs at similar intensities. iCV15/15 and iCV30/30 were not influenced by changes in ET and were highly dependent on VIFT. Neither iADC15/15 nor iADC30/30 were related to VMART. In contrast, iEI15/15 was higher than iEI30/30, and corresponded with the higher ET. In conclusion, only iEI estimated endurance capacity during repeated intermittent running.

References

  • 1 Ahmaidi S, Granier P, Taoutaou Z, Mercier J, Dubouchaud H, Prefaut C. Effects of active recovery on plasma lactate and anaerobic power following repeated intensive exercise.  Med Sci Sports Exerc. 1996;  28 450-456
  • 2 Astrand I, Astrand P O, Christensen E H, Hedman R. Intermittent muscular work.  Acta Physiol Scand. 1960;  48 448-453
  • 3 Astrand I, Astrand P O, Christensen E H, Hedman R. Myohemoglobin as an oxygen-store in man.  Acta Physiol Scand. 1960;  48 454-460
  • 4 Bangsbo J, Norregaard L, Thorso F. Activity profile of competition soccer.  Can J Sport Sci. 1991;  16 110-116
  • 5 Berthoin S, Baquet G, Dupont G, Blondel N, Mucci P. Critical velocity and anaerobic distance capacity in prepubertal children.  Can J Appl Physiol. 2003;  28 561-575
  • 6 Berthoin S, Baquet G, Dupont G, Van Praagh E. Critical velocity during continuous and intermittent exercises in children.  Eur J Appl Physiol. 2006;  98 132-138
  • 7 Bickham D C, Bentley D J, Le Rossignol P F, Cameron-Smith D. The effects of short-term sprint training on MCT expression in moderately endurance-trained runners.  Eur J Appl Physiol. 2006;  96 636-643
  • 8 Billat L V. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training.  Sports Med. 2001;  31 75-90
  • 9 Billat L V, Koralsztein J P. Significance of the velocity at V·O2max and time to exhaustion at this velocity.  Sports Med. 1996;  22 90-108
  • 10 Billat L V, Koralsztein J P, Morton R H. Time in human endurance models. From empirical models to physiological models.  Sports Med. 1999;  27 359-379
  • 11 Bishop D, Jenkins D G, Howard A. The critical power function is dependent on the duration of the predictive exercise tests chosen.  Int J Sports Med. 1998;  19 125-129
  • 12 Bishop D, Spencer M. Determinants of repeated-sprint ability in well-trained team-sport athletes and endurance-trained athletes.  J Sports Med Phys Fitness. 2004;  44 1-7
  • 13 Bosquet L, Leger L, Legros P. Methods to determine aerobic endurance.  Sports Med. 2002;  32 675-700
  • 14 Buchheit M. The 30-15 intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players.  J Strength Cond Res. 2007; 
  • 15 Christmass M A, Dawson B, Passeretto P, Arthur P G. A comparison of skeletal muscle oxygenation and fuel use in sustained continuous and intermittent exercise.  Eur J Appl Physiol. 1999;  80 423-435
  • 16 Dekerle J, Sidney M, Hespel J M, Pelayo P. Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances.  Int J Sports Med. 2002;  23 93-98
  • 17 Dupont G, Blondel N, Lensel G, Berthoin S. Critical velocity and time spent at a high level of V·O2 for short intermittent runs at supramaximal velocities.  Can J Appl Physiol. 2002;  27 103-115
  • 18 Dupont G, Moalla W, Guinhouya C, Ahmaidi S, Berthoin S. Passive versus active recovery during high-intensity intermittent exercises.  Med Sci Sports Exerc. 2004;  36 302-308
  • 19 Duthie G, Pyne D, Hooper S. Applied physiology and game analysis of rugby union.  Sports Med. 2003;  13 973-991
  • 20 Ettema J H. Limits of human performance and energy-production.  Int J Physiol Arbeitsphysiol. 1966;  22 45-54
  • 21 Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness.  Sports Med. 2005;  35 757-777
  • 22 Green S. A definition and systems view of anaerobic capacity.  Eur J Appl Physiol. 1994;  69 168-173
  • 23 Hill D W. The critical power concept. A review.  Sports Med. 1993;  16 237-254
  • 24 Kachouri M, Vandewalle H, Billat V, Huet M, Thomaidis M, Jousselin E, Monod H. Critical velocity of continuous and intermittent running exercise. An example of the limits of the critical power concept.  Eur J Appl Physiol. 1996;  73 484-487
  • 25 Laursen P B, Jenkins D G. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes.  Sports Med. 2002;  32 53-73
  • 26 Maxwell N S, Nimmo M A. Anaerobic capacity: a maximal anaerobic running test versus the maximal accumulated oxygen deficit.  Can J Appl Physiol. 1996;  21 35-47
  • 27 Millet G P, Libicz S, Borrani F, Fattori P, Bignet F, Candau R. Effects of increased intensity of intermittent training in runners with differing V·O2 kinetics.  Eur J Appl Physiol. 2003;  90 50-57
  • 28 Monod H, Scherrer J. The work capacity of a synergicmuscular group.  Ergonomics. 1965;  8 329-338
  • 29 Morton R H, Billat L V. The critical power model for intermittent exercise.  Eur J Appl Physiol. 2004;  91 303-307
  • 30 Nummela A, Hamalainen I, Rusko H. Comparison of maximal anaerobic running tests on a treadmill and track.  J Sports Sci. 2007;  25 87-96
  • 31 Nummela A, Mero A, Stray-Gundersen J, Rusko H. Important determinants of anaerobic running performance in male athletes and non-athletes.  Int J Sports Med. 1996;  17 (Suppl 2) S91-S96
  • 32 Peronnet F, Thibault G. Mathematical analysis of running performance and world running records.  J Appl Physiol. 1989;  67 453-465
  • 33 Poole D C, Mathieu-Costello O. Relationship between fiber capillarization and mitochondrial volume density in control and trained rat soleus and plantaris muscles.  Microcirculation. 1996;  3 175-186
  • 34 Rusko H, Nummela A, Mero A. A new method for the evaluation of anaerobic running power in athletes.  Eur J Appl Physiol. 1993;  66 97-101
  • 35 Saunders A C, Feldman H A, Correia C E, Weinstein D A. Clinical evaluation of a portable lactate meter in type I glycogen storage disease.  J Inherit Metab Dis. 2005;  28 695-701
  • 36 Vandewalle H, Peres G, Monod H. Standard anaerobic exercise tests.  Sports Med. 1987;  4 268-289
  • 37 Vandewalle H, Vautier J F, Kachouri M, Lechevalier J M, Monod H. Work-exhaustion time relationships and the critical power concept. A critical review.  J Sports Med Phys Fitness. 1997;  37 89-102

Dr. Martin Buchheit

Faculté des Sciences du Sport
Laboratoire de Recherche Adaptations Réadaptations

Allée P Grousset

80025 Amiens

France

Phone: + 33 3 22 82 89 36

Fax: + 33 3 22 82 79 10

Email: martin.buchheit@u-picardie.fr