Zusammenfassung
Das Weichteilmanagement spielt für den Erfolg einer Kniegelenktotalendoprothese eine entscheidende Rolle. In Kombination mit den knöchernen Resektionen und der Positionierung der femoralen und tibialen Komponenten soll durch den Ausgleich einer präoperativen kapsuloligamentären Dysbalance eine stabile Gelenkführung über den gesamten Flexionsbogen erreicht werden. Es werden verschiedene „Philosophien“ zum Weichteilmanagement in Bezug auf die Technik, das Timing und die Taktik beschrieben. Bisher fehlen dem Operateur jedoch objektive Messinstrumente zur intraoperativen Beurteilung dieser komplexen Zusammenhänge. Darüber hinaus ist das Wissen über die „ideale“ kapsuloligamentäre Stabilität nach einer Knieendoprothese noch gering. Im Rahmen des Forschungsprogramms „OrthoMIT“ (Minimal invasive Orthopädische Therapie) soll daher eine Kombination der konventionellen Techniken zum Weichteilmanagement, der Navigation und von sensorintegrierten Messsystemen technisch realisiert werden. Dieses stellt die Basis zur Entwicklung eines Instrumentes dar, welches sowohl in Fragen der Grundlagenforschung als auch zur intraoperativen Anwendung genutzt werden kann.
Abstract
Soft-tissue management is essential for the outcome in total knee arthroplasty. In combination with osseous resections and component positioning, correction of the underlying ligamentous dysbalance should yield a stable joint throughout the flexion arc. Different “philosophies” with regard to technique, timing and tactics in ligament balancing are described. So far, surgeons have not been provided with standardised devices that allow the objective measurement of this complex issue. Moreover, knowledge concerning the “ideal” soft-tissue stability following knee arthroplasty is still sparse. As part of the scientific project “OrthoMlT” (minimal invasive orthopaedic therapy) an approach to combine conventional soft-tissue management with navigation and force-sensing devices should be realized technically. The aim is to develop an instrument for the objective measurement of soft-tissue management in scientific and clinical applications.
Schlüsselwörter
Kniegelenkprothese - Weichteilmanagement - Extensionsspalt - Flexionsspalt - Navigation - sensorintegriertes Messsystem
Key words
knee arthroplasty - soft tissue management - extension gap - flexion gap - navigation - force‐sensing device
Literatur
1
Bellemans J, Hooghe P D, Vandenneucker H, Van Damme G, Vicot J.
Soft tissue balance in total knee arthroplasty.
Clin Orthop Rel Res.
2006;
452
49-52
2
Peters C L.
Soft-tissue balancing in primary total knee arthroplasty.
Instr Course Lect.
2006;
55
413-417
3 Meyer R P, Gächter (Hrsg) A. Kniechirurgie in der Praxis. Berlin; Springer 2002
4 Rabenseifner L, Trepte (Hrsg) C. Endoprothetik Knie. Darmstadt; Steinkopff-Verlag 2001
5
Figgie H E, Goldberg V M, Heiple K G, Moller H S, Gordon N H.
The influence of tibial-patellofemroal location on function of the knee in patients with the posterior stabilized condylar knee prosthesis.
J Bone Joint Surg [Am].
1986;
68
1035-1040
6
Wyss T F, Schuster A J, Münger P, Pfluger D, Wehrli U.
Does total knee joint replacement with soft tissue balancing surgical technique maintain the natural joint line?.
Arch Orthop Trauma Surg.
2006;
126
480-486
7
Martin J W, Whitside L A.
The influence of joint line position on knee stability after condylar knee arthroplasty.
Clin Orthop Rel Res.
1990;
259
146-156
8
Jojima H, Whiteside L A, Ogata K.
Effect of tibial slope or posterior cruciate ligament release on knee kinematics.
Clin Orthop Rel Res.
2004;
426
194-198
9
Bottros J, Gad B, Krebs V, Barsoum W K.
Gap balancing in total knee arthroplasty.
J Arthroplasty.
2006;
21
11-15
10
Whiteside L A, Mihalko W M.
Surgical procedure for flexion contracture and recurvatum in total knee arthroplasty.
Clin Orthop Rel Res.
2002;
404
189-195
11
Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C.
Variability of extraarticular tibial rotation references for total knee arthroplasty.
Clin Orthop Rel Res.
2005;
436
172-176
12
Laskin R S.
Flexion space configuration in total knee arthroplasty.
J Arthroplasty.
1995;
10
657-660
13
Olcott C W, Scott R D.
A comparison of 4 intraoperative methods to determine femoral component rotation during total knee arthroplasty.
J Arthroplasty.
2000;
15
22-26
14
Asano H, Hoshino A, Wilton T J.
Soft-tissue tension total knee arthroplasty.
J Arthroplasty.
2004;
19
558-561
15
Anouchi Y S, Whiteside L A, Kaiser A D, Miliano M T.
The effect of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty.
Clin Orthop Rel Res.
1991;
287
170-177
16
Arima J, Whitside L A.
Femoral rotational alignment, based on the anteroposterior axis in total knee arthroplasty in a valgus knee.
J Bone Joint Surg [Am].
1995;
77
1331-1334
17
Mihalko W M, Whiteside L A, Krackow K A.
Comparison of ligament-balancing techniques during total knee arthroplasty.
J Bone Joint Surg [Am].
2003;
85
132-135
18 Wehrli U. Behandlung kontrakter Fehlstellungen in der Revisionskniearthroplastik. Jerosch J Knie-TEP Revisionseingriffe. Stuttgart; Thieme 1997
19 Whiteside (Hrsg) L A. Ligament Balancing in Total Knee Arthroplasty - An Instructional Manual. Berlin; Springer 2004
20
Whiteside L A, Saeki K, Mihalko W M.
Functional medial ligament balancing in total knee arthroplasty.
Clin Orthop Rel Res.
2000;
380
45-57
21
Kanamiya T, Whiteside L A, Nakamura T, Mihalko W M, Steiger J, Naito M.
Effect of selective lateral ligament release on stability in knee arthroplasty.
Clin Orthop.
2002;
404
24-31
22
Griffin F M, Insall J N, Scuderi G R.
Accuracy of soft tissue balancing in total knee arthroplasty.
J Arthroplasty.
2000;
15
970-973
23
Trepte C T, Pfanzelt K.
Weichteilmanagement bei der Implantation von bicondylären Knieendoprothesen.
Zentralbl Chir.
2003;
128
70-73
24
Miyasaka K C, Ranawat C S, Mullaji A.
10 - 20-year follow up of total knee arthroplasty for valgus deformities.
Clin Orthop Rel Res.
1997;
345
29-37
25
Sugama R, Kadoya Y, Kobayashi A, Takaoka K.
Preparation of the flexion gap affects the extension gap in total knee arthroplasty.
J Arthroplasty.
2005;
20
602-607
26 Martucci E A. Soft-tissue balancing. Sculco TP, Martucci EA (Eds) Knee Arthroplasty. Wien; Springer 2001
27
Matsueda M, Gengerke T R, Murphy M, Lew W D, Gustilo R B.
Soft tissue release in total knee arthroplasty. Cadaver study using knee without deformities.
Clin Orthop Rel Res.
1999;
366
264-273
28
Lüring C, Hüfner T, Perlick L, Bäthis H, Kretteck C, Grifka J.
The effectiveness of sequential medial soft tissue release on coronal alignment in total knee arthroplasty.
J Arthroplasty.
2006;
21
428-434
29
Lüring C, Oczipka F, Grifka J, Perlick L.
The computer-assisted sequential lateral soft-tissue release in total knee arthroplasty for valgus knees.
Int Orthop.
2007;
30
Lombardi A V, Berend K R.
Posterior cruciate ligament-retaining, posterior stabilized, and varus/valgus posterior stabilized constrained articulation in total knee arthroplasty.
Instr Course Lect.
2006;
55
419-427
31
Mihalko W M, Krackow K A.
Posterior cruciate ligament effects on the flexion space in total knee arthroplasty.
Clin Orthop Rel Res.
1999;
360
243-250
32
Mihalko W M, Whiteside L E.
Bone resection and ligament treatment for flexion contracture in knee arthroplasty.
Clin Orthop Rel Res.
2003;
406
141-147
33
Bellemanns J, Vandenneucker H, Victor J, Vanlauwe J.
Flexion contracture in total knee arthroplasty.
Clin Orthop Rel Res.
2006;
452
78-82
34
Lu H, Mow C S, Lin J.
Total knee arthroplasty in the presence of severe flexion contracture: a report of 37 cases.
J Arthroplasty.
1999;
14
775-780
35
Buechel F F.
A sequential three-step lateral release for correcting fixed valgus knee deformities during total knee arthroplasty.
Clin Orthop Rel Res.
1990;
260
170-175
36
Ishii Y, Matsuda Y, Noguchi H, Kiga H.
Effect of soft tissue tension on measurements of coronal laxity in mobile-bearing total knee arthroplasty.
J Orthop Sci.
2005;
10
496-500
37
Fehring T K, Valadie A L.
Knee instability after total knee arthroplasty.
Clin Orthop Rel Res.
1994;
299
157-162
38
Rupp S, Kohn D.
Der so genannte Knee Balancer.
Oper Orthop Traumatol.
2000;
12
256-260
39
Martin J W, Whiteside L A.
The influence of joint line position on knee stability after condylar knee arthroplasty.
Clin Orthop Rel Res.
1990;
259
146-156
40
Bathis H, Shafizadeh S, Paffrath T, Simanski C, Grifka J, Luring C.
Are computer assisted total knee replacements more accurately placed? A meta-analysis of comparative studies.
Orthopäde.
2006;
35
1056-1065
41
Seon J K, Song E K.
Navigation-assisted less invasive total knee arthroplasty compared with conventional total knee arthroplasty. A randomized prospective trial.
J Arthroplasty.
2006;
21
777-782
42
Decking R, Markmann Y, Fuchs J, Puhl W, Scharf H P.
Leg axis after computer-navigated total knee arthroplasty: a prospective randomized trial comparing computer-navigated and manual implantation.
J Arthroplasty.
2005;
20
282-288
43 Lampe F, Dries S PM, Honl M, Hille E. Conventional versus computer assisted total knee replacement - a radiographic analysis of postoperative alignment. 4th Annual Meeting of CAOS-International Proceedings. Chicago; 2004: 99
44
Lüring C, Perlick L, Tingart M, Bäthis H, Grifka J.
Fortschritte im Weichteilmanagement in der Knieendoprothetik.
Orthopäde.
2006;
10
1066-1072
45
Clemens U, Miehlke R K.
Advanced navigation planning inclucing soft tissue management.
Orthopedics.
2005;
28
1259-1262
46 Manili M, Fredella N, Sgrambiglia R. Total knee replacement and navigation. Zanasi S, Brittberg M, Marcacci M Basic Science, Clinical Repair and Reconstruction of Articular Cartilage Defects: Current Status and Prospects. Bologna; Timeo Editore 2006: 929-942
47
Crottet D, Maeder T, Fritschy D, Bleuler H, Nolte L P, Pappas I P.
Development of a force amplitude- and location-sensing device designed to improve the ligament balancing procedure in TKA.
IEEE Transactions on Bio-Medical Engineering.
2005;
52
1609-1611
48
Komistek R D, Kane T R, Mahfouz M, Ochoa J A, Dennis D A.
Knee mechanics: a review of past and present techniques to determine in vivo loads.
J Biomech.
2005;
38
215-228
49
Agins H J, Harder V S, Lautenschlager E P, Kudrna J C.
Effects of sterilization on the Tekscan digital pressure sensor.
Med Eng Phys.
2003;
25
775-780
50
Fregly B J, Sawyer W G.
Estimation of discretization errors in contact pressure measurements.
J Biomech.
2003;
36
609-613
51
Fregly B J, Bei Y, Sylvester M E.
Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements.
J Biomech.
2003;
36
1659-1668
52
Harris M L, Morberg P, Bruce W JM, Walsh W R.
An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film.
J Biomech.
1999;
32
951-958
53 Kersh M, Ploeg H. How does normal flexion patellofemoral contact area change before and after deep knee flexion? Vail (USA): Summer Bioengineering Conference. 2005
54
Werner F W, Ayers D C, Maletsky L P, Rullkoetter P J.
The effect of valgus/varus malalignment on load distribution in total knee replacements.
J Biomech.
2005;
38
349-355
55
Kaufman K R, Kovacevic N, Irby S E, Colwell C W.
Instrumented implant for measuring tibiofemoral forces.
J Biomech.
1996;
29
667-671
56 Crottet D, Maeder T, Fritschy D, Bleuler H, Nolte L P, Pappas I P. A force-sensing device for ligament balancing in total knee arthroplasty. 4th Annual Meeting of CAOS-International Proceedings, Chicago (USA). 2004
57 Crottet D, Pappas I P, Maeder T, Jacq C, Bleuler H. Device for measuring tibio-femoral force amplitudes and force locations in total knee arthroplasty. Patent WO2005122899, 29-12-2005.
58
Crottet D, Kowal J, Sarfert S A, Maeder T, Bleuler H, Nolte L P, Durselen L.
Ligament balancing in TKA: Evaluation of a force-sensing device and the influence of patellar eversion and ligament release.
J Biomech.
2007;
40
1709-1715
59
Mohanty L, Tjin S C, Ngo N Q.
Pressure mapping sensor with an array of chirped sampled fiber gratings.
Sens Actuators A Phys.
2005;
117
217-221
60
Mohanty L, Tjin S C.
Pressure mapping at orthopaedic joint interfaces with fiber Bragg gratings.
Applied Physics Letters.
2006;
88
1-3
61 Marmignon C, Leimnei A, Cinquin P. Knee prosthesis - a robotized distraction device helping the surgeon in ligament balancing. 3rd Annual Meeting of CAOS-International Proceedings, Marbella (Spanien). 2003
62 Marmignon C, Leimnei A, Cinquin P. Robotized distraction device for ligament balance monitoring in total knee arthroplasty. 3rd Annual Meeting of CAOS-International Proceedings, Marbella (Spanien). 2003
63 Marmignon C, Leimnei A, Lavallée S, Cinquin P, Hodgson A A. A computer-assisted controlled distraction device to guide ligament balancing during knee arthroplasty. 4th Annual Meeting of CAOS-International Proceedings, Chicago (USA). 2004
64 Heinlein B, Rohlmann A, Graichen F, Bergmann G. An instrumented knee endoprosthesis for measuring loads in vivo. 51st Annual Meeting of the Orthopedic Research Society, Washington (D.C./USA). 2005
65
Kirking B, Krevolin J, Townsend C P, Colwell Jr C W, D'Lima D D.
A multiaxial force-sensing implantable tibial prosthesis.
J Biomech.
2006;
39
1744-1751
66
Morris B A, D'Lima D D, Slamin J, Kovacevic N, Arms S W, Townsend C P, Colwell Jr C W.
e-Knee: evolution of the electronic knee prosthesis. Telemetry technology development.
J Bone Joint Surg [Am].
2006;
83
62-66
67
Wasielewski R, Galat D, Komistek R.
Correlation of compartment pressure data from intraoperative sensing device with postoperative fluoroscopic kinematic results in TKA patients.
J Biomech.
2005;
38
333-339
68 Kovacevic N. Knee joint load measuring instrument. Patent WO9217113, 15-10-1992.
69 Krivopal B. Pressure sensitive ink means, and methods of use. Patent US5989700, 23-11-1999.
Dipl.-Ing. (FH) Frauke Schmidt
Lehrstuhl für Medizintechnik Helmholtz-Institut für Biomedizinische Technik RWTH Aachen
Pauwelsstraße 20
52074 Aachen
Phone: 02 41/80-8 87 63
Fax: 02 41/80-2 28 72
Email: schmidt@hia.rwth-aachen.de