Synthesis, Table of Contents PAPER © Georg Thieme Verlag Stuttgart · New York Facile Syntheses of Cavitands with Sulfur-Containing Functional Groups Tim Vorfalt, Herbert Plenio*Anorganische Chemie im Zintl-Institut, TU Darmstadt, Petersenstr. 18, 64287 Darmstadt, Germanye-Mail: Plenio@tu-darmstadt.de; Recommend Article Abstract Buy Article All articles of this category Abstract The reactions of the (CH2Br)4-cavitand 1 with variable amounts of KSAc produce various (CH2Br)4-n(CH2SAc)n-cavitands (n = 0-4). Acetyl chloride and the (CH2SH)4-cavitand react to generate various (CH2SH)4-n(CH2SAc)n-cavitands (n = 0-4), which both constitute useful building blocks for hemicarcerand synthesis. Binuclear sulfur-bridged hemicarcerands are available by the reaction of CH2Br and CH2SH functional groups in the respective cavitands. The thioacetate protective group in such binuclear cavitands can be cleaved with LiAlH4 to result in the formation of the respective hemicarcerands with up to six SH groups. Key words cavitand - thiols - supramolecular chemistry - macrocycles Full Text References References 1 Rebek J. Angew. Chem. Int. Ed. 2005, 44: 2068 2 Garcia H. Roth HD. Chem. Rev. 2002, 102: 3947 3 Rosi NL. Eckert J. Eddaoudi M. Vodak DT. Kim J. O’Keeffe M. Yaghi OM. Science 2003, 300: 127 4 Cram DJ. Cram JM. In Container Molecules and their Guests, Monographs in Supramolecular Chemistry Stoddart JF. The Royal Society of Chemistry; Cambridge: 1994. 5 Warmuth R. Yoon J. Acc. Chem. Res. 2001, 34: 95 6 Sherman J. Chem. Commun. 2003, 1617 7 Liu X. Liu Y. Li G. Warmuth R. Angew. Chem. Int. Ed. 2006, 45: 901 8 Gutsche CD. Calixarenes Revisited The Royal Society of Chemistry; Cambridge: 1998. 9 Marquez C. Hudgins RR. Nau WM. J. Am. Chem. Soc. 2004, 126: 5806 10 Lee JW. Samal S. Selvapalam N. Kim H.-J. Kim K. Acc. Chem. Res. 2003, 36: 621 11 Engeldinger E. Armspach D. Matt D. Chem. Rev. 2003, 103: 4147 12 Breslow R. Dong SD. Chem. Rev. 1998, 98: 1997 13 Cram DJ. Tanner ME. Thomas R. Angew. Chem. Int. Ed. Engl. 1991, 30: 1024 14 Purse BW. Gissot A. Rebek J. J. Am. Chem. Soc. 2005, 127: 11222 15 Warmuth R. Makowiec S. J. Am. Chem. Soc. 2005, 127: 1084 16 Gembus A. Corzilius B. Eichel R.-A. Dinse K.-P. Immel S. Stumm D. Flauaus M. Plenio H. J. Phys. Chem. B 2006, 110: 15012 17 Brust M. Walker M. Bethell D. Schiffrin DJ. Whyman R. J. Chem. Soc., Chem. Commun. 1994, 801 18 Templeton AC. Wuelfing WP. Murray RW. Acc. Chem. Res. 2000, 33: 27 19 Schmid G. Corain B. Eur. J. Inorg. Chem. 2003, 3081 20 Donkers RL. Lee D. Murray RW. Langmuir 2004, 20: 1945 21 Woehrle GH. Hutchison JE. Inorg. Chem. 2005, 44: 6149 22 Balasubramanian R. Guo R. Mills AJ. Murray RW. J. Am. Chem. Soc. 2005, 127: 8126 23 Guo R. Murray RW. J. Am. Chem. Soc. 2005, 127: 12140 24 Schulz-Dobrick M. Sarathy KV. Jansen M. J. Am. Chem. Soc. 2005, 127: 12816 25 Inomata T. Konishi K. Chem. Commun. 2003, 1282 26 Boerrigter H. Verboom W. van Hummel GJ. Harkema S. Reinhoudt DN. Tetrahedron Lett. 1996, 37: 5167 27 Laughrey ZR. Gibb BC. J. Org. Chem. 2006, 71: 1289 28 Irwin JL. Sherburn MS. Inorg. Chem. 2001, 65: 5846 29 Irwin JL. Sherburn MS. J. Org. Chem. 2000, 65: 602 30 Irwin JL. Sherburn MS. Org. Lett. 2001, 3: 225 31 Flauaus M. Herzing M. Köllhofer A. Laly M. Plenio H. Eur. J. Org. Chem. 2001, 1061 32 Hammerschmidt E. Bieber W. Vögtle F. Chem. Ber. 1978, 111: 2445