Abstract
α-Aminonitriles and α-(alkylideneamino)nitriles can serve as readily available α-aminocarbanion equivalents. Their conjugate addition to α,β-unsaturated esters followed by reduction furnishes polysubstituted γ-amino acid esters in moderate to high yield.
Key words
Michael addition - reduction - α-aminonitriles - α-aminocarbanions - γ-amino acids
References
1
Analgesics
Buschmann H.
Christoph T.
Friderichs E.
Maul C.
Sundermann B.
Wiley-VCH;
Weinheim:
2002.
2
Trabocchi A.
Guarna F.
Guarna A.
Curr. Org. Chem.
2005,
9:
1127
3
Bryans JS.
Wustrow DJ.
Med. Res. Rev.
1999,
19:
149
4
Satzinger G.
Arzneim.-Forsch.
1994,
44:
261
5
Silverman RB.
Andruszkiewicz R.
Nanavati SM.
Taylor CP.
Vartanian MG.
J. Med. Chem.
1991,
34:
2295
6
Baldauf C.
Guenther R.
Hofmann H.-J.
Helv. Chim. Acta
2003,
86:
2573
7
Seebach D.
Brenner M.
Rueping M.
Jaun B.
Chem. Eur. J.
2002,
8:
573
8
Seebach D.
Schaeffer L.
Brenner M.
Hoyer D.
Angew. Chem. Int. Ed.
2003,
42:
776 ; Angew. Chem. 2003, 115, 800
9
Hintermann T.
Gademann K.
Jaun B.
Seebach D.
Helv. Chim. Acta
1998,
81:
983
10
Andruszkiewicz R.
Silverman RB.
Synthesis
1989,
953
11
Brenner M.
Seebach D.
Helv. Chim. Acta
1999,
82:
2365
12
Masson G.
Cividino P.
Py S.
Vallee Y.
Angew. Chem. Int. Ed.
2003,
42:
2265 ; Angew. Chem.
2003, 115, 2367
13
Masson G.
Zeghida W.
Cividino P.
Py S.
Vallee Y.
Synlett
2003,
1527
14
Kison C.
Meyer N.
Opatz T.
Angew. Chem. Int. Ed.
2005,
44:
5662 ; Angew. Chem.
2005, 117, 5807
15
von Miller W.
Plöchl J.
Ber. Dtsch. Chem. Ges.
1898,
31:
2718
16
Bodforss S.
Ber. Dtsch. Chem. Ges.
1931,
64:
1111
17
Treibs A.
Derra R.
Liebigs Ann. Chem.
1954,
589:
176
18
Meyer N.
Opatz T.
Synlett
2003,
1427
19
Meyer N.
Werner F.
Opatz T.
Synthesis
2005,
945
20a
Albright JD.
Tetrahedron
1983,
39:
3207 ; and references cited therein
For an asymmetric variant of the 1,4-addition, see:
20b
Enders D.
Gerdes P.
Kipphardt H.
Angew. Chem. Int. Ed.
1990,
29:
179 ; Angew. Chem. 1990, 102, 226
21
Mattalia J.-M.
Marchi-Delapierre C.
Hazimeh H.
Chanon M.
ARKIVOC
2006,
(iv):
90
22
Opatz T.
Ferenc D.
Org. Lett.
2006,
8:
4473
23
Tsuge O.
Ueno K.
Kanemasa S.
Yorozu K.
Bull. Chem. Soc. Jpn.
1987,
60:
3347
24
Tsuge O.
Kanemasa S.
Yorozu K.
Ueno K.
Bull. Chem. Soc. Jpn.
1987,
60:
3359
25
Tsuge O.
Kanemasa S.
Yamada T.
Matsuda K.
J. Org. Chem.
1987,
52:
2523
26
Roux-Schmitt MC.
Croisat D.
Seyden-Penne J.
Wartski L.
Cossentini M.
Pol. J. Chem.
1996,
70:
325
27
O’Donnell MJ.
Aldrichimica Acta
2001,
34:
3
28
Zymalkowski F.
Katalytische Hydrierungen im Organisch-Chemischen Laboratorium (Sammlung Chemischer und Chemisch-Technischer Beiträge, Neue Folge Nr. 61)
Enke;
Stuttgart:
1965.
29 A NOESY-spectrum of trans-8d was recorded and the distance between H4 and H5 was calculated from the cross-peak volume integrals using the diastereotopic NCH2 protons as a reference. The obtained value (3.3 Å) was in good accordance with a 3D model of the trans-isomer (3.1 Å) but not with the cis-isomer (2.4 Å). Moreover, a transient NOE experiment on trans-8d revealed a close contact between H4 and one of the benzylic protons of the substituent in 5-position. The γ-lactam obtained by cyclization of 7d was not identical with trans-8d.
30
O’Donnell MJ.
Polt RL.
J. Org. Chem.
1982,
47:
2663
31
Meyer N.
Opatz T.
Synlett
2004,
787
32
Paventi M.
Edward JT.
Can. J. Chem.
1987,
65:
282
33
Lagriffoul P.-H.
Tadros Z.
Taillades J.
Commeyras A.
J. Chem. Soc., Perkin Trans. 2
1992,
1279
34
Liu J.
Zhao Y.
Zhou Y.
Li L.
Zhang H.
Zhang TY.
Org. Biomol. Chem.
2003,
1:
3227
35
Ahmad S.
Doweyko LM.
Dugar S.
Grazier N.
Ngu K.
Wu SC.
Yost KJ.
Chen B.-C.
Gougoutas JZ.
DiMarco JD.
Lan S.-J.
Gavin BJ.
Chen AY.
Dorso CR.
Serafino R.
Kirby M.
Atwal KS.
J. Med. Chem.
2001,
44:
3302
36 CCDC 621580 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.