Abstract
Tetrahydro-4H -thiopyran-4-one was prepared in >75% yield by treatment of dimethyl 3,3′-thiobispropanoate with NaOMe (generated in situ) in THF solution and decarboxylation of the resulting methyl tetrahydro-4-oxo-2H -thiopyran-3-carboxylate in refluxing 10% aqueous H2 SO4 . Reaction of tetrahydro-4H -thiopyran-4-one with Me3 SiCl and Et3 N in CHCl3 gave the corresponding trimethylsilyl enol ether in near quantitative yield. The prepared reagents are useful for the synthesis of thiopyran-containing compounds.
Key words
tetrahydro-4H -thiopyran-4-one - 4-thianone - heterocyclic ketone - Dieckmann cyclization - thiopyran synthesis
References
1a
Press JB.
Russell RK.
Christiaens LEE. In
Comprehensive Heterocyclic Chemistry II
Vol. 2:
Bird CW.
Elsevier;
Oxford:
1997.
1b
Ingall AH. In
Comprehensive Heterocyclic Chemistry II
Vol. 5:
McKillop A.
Pergamon;
Oxford:
1997.
1c
Vedejs E.
Krafft GA.
Tetrahedron
1982,
38:
2857
For an overview and list of references, see:
2a
Samuel R.
Nair SK.
Asokan CV.
Synlett
2000,
1804
2b
Ward DE.
Gai Y.
Lai Y.
Synlett
1996,
261
3 Review: Vartanyan RS.
Arm. Khim. Zh.
1985,
38:
166
4 Aldrich Chemical Co., 2005-2006: Cdn $174/5 g of 3 . Using the procedure described herein, we estimate the cost of materials (solvents, reagents and other materials) for the preparation of 3 to be ca. $1/g (50 g scale)
5a
Ward DE.
Guo C.
Sasmal PK.
Man CC.
Sales M.
Org. Lett.
2000,
2:
1325
5b
Ward DE.
Sales M.
Man CC.
Shen J.
Sasmal PK.
Guo C.
J. Org. Chem.
2002,
67:
1618
5c
Ward DE.
Jheengut V.
Akinnusi OT.
Org. Lett.
2005,
7:
1181
5d
Ward DE.
Gillis HM.
Akinnusi OT.
Rasheed MA.
Saravanan K.
Sasmal PK.
Org. Lett.
2006,
8:
2631
From N -methyl-4-piperidone:
6a
Johnson PY.
Berchtold GA.
J. Org. Chem.
1970,
35:
584
6b
Unkovskii BV.
Psal’ti FI.
Khim. Geterotsikl. Soedin., Sb.
1970,
2:
174 ; Chem. Abstr. 1972 , 77 , 114188
6c
Garst ME.
McBride BJ.
Johnson AT.
J. Org. Chem.
1983,
48:
8
From 1,5-dibromo-3-pentanone:
6d
Sviridov SV.
Vasilevskii DA.
Kulinkovich OG.
Zh. Org. Khim.
1991,
27:
1431
7a
Bennett GM.
Scorah LVD.
J. Chem. Soc.
1927,
194
7b
Fehnel EA.
Carmack M.
J. Am. Chem. Soc.
1948,
70:
1813
8a
Naylor RF.
J. Chem. Soc.
1949,
2749
8b
Onesta R.
Castelfranchi G.
Gazz. Chim. Ital.
1959,
89:
1127
8c
Casy G.
Sutherland AG.
Taylor RJK.
Urben PG.
Synthesis
1989,
767
8d
Rule NG.
Detty MR.
Kaeding JE.
Sinicropi JA.
J. Org. Chem.
1995,
60:
1665
8e
Matsuyama H.
Miyazawa Y.
Takei Y.
Kobayashi M.
J. Org. Chem.
1987,
52:
1703
8f
Chowdhury AZMS.
Khandker MMR.
Bhuiyan MMH.
Hossain MK.
Pak. J. Sci. Ind. Res.
2001,
44:
63
9a
Barkenbus C.
Midkiff VC.
Newman RM.
J. Org. Chem.
1951,
16:
232
9b
Traverso G.
Chem. Ber.
1958,
91:
1224
9c
Parham WE.
Christensen L.
Groen SH.
Dodson RM.
J. Org. Chem.
1964,
29:
2211
9d Harada K, Suginose R, and Kashiwagi K. inventors; Japanese Patent 99198350.
; Chem. Abstr. 2001 , 134 : 131428
10a Commercially available (e.g., Aldrich Chemical Co., 2005-2006: Cdn $70/L) or readily prepared from methyl acrylate and H2 S: Gershbein LL.
Hurd CD.
J. Am. Chem. Soc.
1947,
69:
241
10b See also ref. 8e.
11a Kashiwagi T, Murakami M, Isaka I, and Ozasa T. inventors; Japanese Patent 74 108119.
; Chem. Abstr. 1976 , 85 : 78006
11b
Duus F.
Tetrahedron
1981,
37:
2633
11c
Liu HJ.
Ngooi TK.
Can. J. Chem.
1982,
60:
437
11d
Dowd P.
Choi SC.
Tetrahedron
1991,
47:
4847
11e
Tamai S.
Ushirogochi H.
Sano S.
Nagao Y.
Chem. Lett.
1995,
295
11f
Ghosh AK.
Liu W.
J. Org. Chem.
1995,
60:
6198
11g
Conroy JL.
Sanders TC.
Seto CT.
J. Am. Chem. Soc.
1997,
119:
4285
11h
Li C.-J.
Chen D.-L.
Synlett
1999,
735
12 A reaction using 1.1 equiv of NaOMe did not go to completion within 5 h (ca. 90% conversion).
13a
Aoki S.
Fujimura T.
Nakamura E.
J. Am. Chem. Soc.
1992,
114:
2985
13b
Evans PA.
Modi DP.
J. Org. Chem.
1995,
60:
6662
13c
Biondi S.
Piga E.
Rossi T.
Vigelli G.
Bioorg. Med. Chem. Lett.
1997,
7:
2061
13d
Karisalmi K.
Rissanen K.
Koskinen AMP.
Org. Biomol. Chem.
2003,
1:
3193
13e
Karisalmi K.
Koskinen AMP.
Nissinen M.
Rissanen K.
Tetrahedron
2003,
59:
1421
14
House HO.
Czuba LJ.
Gall M.
Olmstead HD.
J. Org. Chem.
1969,
34:
2324
15 Na metal was cut into pieces weighing ca. 50-100 mg (3-5 mm per side). The rate of Na consumption depends on the size of pieces; with larger pieces, more time is required to reach 90% conversion.
16 A few specks of Na metal may remain at this point.
17 The presence of small amounts of 1 (<1%) and its corresponding half-acid (1-2%) were detected by 13 C NMR and confirmed by spiking with authentic samples.