References and Notes
1 For an excellent review on the thermal, aliphatic Claisen rearrangement, see: Ziegler FE.
Chem. Rev.
1988,
88:
1423
2a
Ireland RE.
Mueller RH.
J. Am. Chem. Soc.
1972,
94:
5897
2b
Ireland RE.
Mueller RH.
Willard AF.
J. Am. Chem. Soc.
1976,
98:
2868
2c
Ireland RE.
Wipf P.
Armstrong JD.
J. Org. Chem.
1991,
56:
650
2d
Gilbert JC.
Yin J.
Fakhreddine FH.
Karpinski ML.
Tetrahedron
2004,
60:
51
For excellent recent reviews, see:
3a
Martin-Castro AM.
Chem. Rev.
2004,
104:
2939
3b
Chai Y.-H.
Hong S.-p.
Lindsay HA.
McFarland C.
McIntosh C.
Tetrahedron
2002,
58:
2905
For sequential 1,4-addition-Claisen rearrangement, see:
3c
Aoki Y.
Kuwajima I.
Tetrahedron Lett.
1990,
31:
7457
3d
Takai K.
Ueda T.
Kaihara H.
Sunami Y.
Moriwake T.
J. Org. Chem.
1996,
61:
8728
4
Srikrishna A.
Lakshmi BV.
Tetrahedron Lett.
2005,
46:
4879
5
Louis I.
Hungerford LN.
Humphries EJ.
McLeod MD.
Org. Lett.
2006,
8:
1117
6
Bandur NG.
Harms K.
Koert U.
Synlett
2005,
773
7
Viseux EME.
Parsons PJ.
Pavey JBJ.
Carter CM.
Pinto I.
Synlett
2003,
1856
8
Wilson MS.
Woo JCS.
Dake GR.
J. Org. Chem.
2006,
71:
4237
9
Troll T.
Wiedemann J.
Tetrahedron Lett.
1992,
33:
3847
10
Hanamoto T.
Baba Y.
Inanaga J.
J. Org. Chem.
1993,
58:
299
11
Smith PM.
Thomas EJ.
J. Chem. Soc., Perkin Trans. 1
1998,
3541
12a
Ciganek E.
Org. React.
1997,
51:
201
12b
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
13 The unexpected superiority of DABCO over more basic tertiary amine catalysts in the Baylis-Hillman reaction between acrylamide and aldehydes has been reported. See: Faltin C.
Fleming EM.
Connon SJ.
J. Org. Chem.
2004,
69:
6496
14
Shieh W.
Dell S.
Bach A.
Repič O.
Blacklock TJ.
J. Org. Chem.
2003,
68:
1854
15
General Procedure of the Rearrangement.
A reaction flask was charged with the allylic acrylate 3 (32.4 mmol), DABCO (0.73 g, 6.5 mmol), TMSCl (10.58 g, 97.4 mmol), DBU (9.90 g, 65.0 mmol) and MeCN (75 mL). The mixture was heated under reflux and the reaction was monitored by GC or TLC until the reaction was complete (reaction time as specified in Table
[1]
). Then, the volatiles were removed under reduced pressure. The residue was suspended in Et2O (100 mL) and stirred with 3 N HCl (40 mL) for a couple of minutes. The organic layer was separated, and washed sequentially with brine and H2O, dried over anhyd MgSO4 and concentrated in vacuo. The residue was purified by column chromatography or subjected to bulb-to-bulb distillation or recrystallization from EtOH to afford the pure compounds 4a-h as a colorless oil and 4i-j as a white solid (Table
[1]
).
16
Ghosh N.
Synlett
2004,
574
17 All new compounds have been isolated in pure form and characterized by spectral data (NMR, IR and MS).
Selected Data for Compounds 4.
Compound 4c: 1H NMR (300 MHz, CDCl3): δ = 12.23 (br, 1 H), 6.33 (s, 1 H), 5.67 (br s, 1 H), 5.52 (dd, J = 15.5, 6.1 Hz, 1 H), 5.42 (dt, J = 15.5, 6.1 Hz, 1 H), 2.99 (d, J = 6.1 Hz, 2 H), 2.30 (dsept, J = 6.1, 6.8 Hz, 1 H), 1.00 (2 d, J = 6.8 Hz, 6 H). 13C NMR (75 MHz, CDCl3): δ = 173.0 (s), 140.5 (d), 139.5 (s), 127.3 (t), 123.0 (d), 34.1 (t), 31.1 (d), 22.4 (2q). IR (KBr): ca. 3000, 1698, 1436, 1289, 1158, 952 cm-1. MS (EI): m/z = 154 [M]+, 111 [M - C3H7]+.
Compound 4e: 1H NMR (300 MHz, CDCl3): δ = ca. 11.1 (br, 1 H), 6.32 (s, 1 H), 5.68 (s, 1 H), 5.15 (t, J = 7.2 Hz, 1 H), 3.03 (d, J = 7.2 Hz, 2 H), 2.08 (br q, J = 7.5 Hz, 2 H), 2.07 (q, J = 7.5 Hz, 2 H), 1.03 (t, J = 7.5 Hz, 3 H), 0.97 (t, J = 7.5 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 173.1 (s), 145.6 (s), 139.5 (s), 126.9 (t), 118.2 (d), 29.2 (2 t), 23.2 (t), 12.1 (q), 12.8 (q). IR (KBr): ca. 3000, 1698, 1629, 1434, 1283, 1155, 954 cm-1. MS (EI): m/z = 168 [M]+, 139 [M - C2H5]+.
Compound 4f (major trans-isomer): 1H NMR (300 MHz, CDCl3): δ = ca. 11.0 (br, 1 H), 6.31 (s, 1 H), 5.65 (s, 1 H), 5.23 (t, J = 7.2 Hz, 1 H), 3.01 (d, J = 7.2 Hz, 2 H), 2.30 (sept, J = 6.8 Hz, 1 H), 1.60 (s, 3 H), 1.03 (2 d, J = 6.8 Hz, 6 H). 13C NMR (75 MHz, CDCl3): δ = 173.1 (s), 144.1 (s), 139.1 (s), 126.8 (t), 117.6 (d), 36.8 (d), 29.4 (t), 21.4 (2q), 13.3 (q). IR (KBr,): ca. 3000, 1695, 1630, 1434, 1284, 1156, 952
cm-1. MS (EI): m/z = 168 [M]+, 125 [M - C3H7]+.
Compound 4j: 1H NMR (300 MHz, CDCl3): δ = 7.34 (d, J = 11.4 Hz, 1 H), 6.55 (dd, J = 14.7, 10.5 Hz, 1 H), 6.39 (dd, J = 14.7, 11.4 Hz, 1 H), 6.22 (dd, J = 14.1, 10.5 Hz, 1 H), 5.96 (dq, J = 14.1, 6.8 Hz, 1 H), 1.95 (s, 3 H), 1.85 (d, J = 6.8 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 173.7 (s), 141.0 (2 d), 135.0 (d), 131.6 (d), 125.2 (d), 125.0 (s), 18.6 (q), 12.3 (q). IR: (KBr): ca. 3000, 1678, 1601, 1427, 1316, 1268, 987, 929 cm-1. MS (EI): m/z = 152 [M]+, 107 [M - CO2H]+.
Compound 4k: 1H NMR (400 MHz, CDCl3): δ = 6.47 (s, 1 H), 5.92 (s, 1 H), 5.75 (s, 1 H), 3.19 (s, 2 H), 2.24 (s, 2 H), 2.22 (s, 2 H), 1.05 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 28.3 (2 q), 33.7 (s), 39.6 (t), 43.8 (t), 51.0 (t), 125.8 (d), 130.3 (t), 136.0 (s), 161.1 (s), 171.1 (s), 200.6 (s). IR: (KBr): ca. 3000, 2929, 1720, 1667, 1372, 1160, 982 cm-1. MS (EI): m/z = 208 [M]+, 163 [M - CO2H]+.
18 For a computational study on boat or chair preferences in the Ireland-Claisen rearrangements of cylohexenyl silyl ketene acetals, see: Khaledy MM.
Kalani MYS.
Khuong KS.
Houk KN.
J. Org. Chem.
2003,
68:
572
19 For a review on this topic, see: Hoffmann HMR.
Rabe J.
Angew. Chem., Int. Ed. Engl.
1985,
24:
94
20
Cateni F.
Zilic J.
Zacchigna M.
Bonivento P.
Frausin F.
Scarcia V.
Eur. J. Med. Chem.
2006,
41:
192 ; and references cited therein