References and Notes
1a
Acetylene Chemistry: Chemistry, Biology, and Material Science
Diederich F.
Stang PJ.
Tykwinski RR.
VCH;
Weinheim:
2005.
1b
Modern Acetylene Chemistry
Stang PJ.
Diederich F.
VCH;
Weinheim:
1995.
For reviews of phenylene ethynylenes, see:
1c
James DK.
Tour JM. In
Topics in Current Chemistry
Vol. 257:
Springer;
Berlin:
2005.
p.33-62
1d
Stone MT.
Heemstra JM.
Moore JS.
Acc. Chem. Res.
2006,
39:
11
1e
Ray CR.
Moore JS.
Adv. Polym. Sci.
2005,
177:
91
2
Shirai Y.
Osgood AJ.
Zhao Y.
Kelly KF.
Tour JM.
Nano Lett.
2005,
5:
2330
3a
Wackerly JW.
Moore JS.
Macromolecules
2006,
39:
7269
3b
Elliott EL.
Ray CR.
Kraft S.
Atkins JR.
Moore JS.
J. Org. Chem.
2006,
71:
5282
3c
Balakrishnan K.
Datar A.
Zhang W.
Yang X.
Naddo T.
Huang J.
Zuo J.
Yen M.
Moore JS.
Zang L.
J. Am. Chem. Soc.
2006,
128:
6576 ; and references therein
4
Orita A.
Jiang L.
Tsuruta M.
Otera J.
Chem. Lett.
2002,
136
5
Orita A.
An D.-L.
Nakano T.
Yaruva J.
Ma N.
Otera J.
Chem. Eur. J.
2002,
8:
2005
6
Orita A.
Nakano T.
An D.-L.
Tanikawa K.
Wakamatsu K.
Otera J.
J. Am. Chem. Soc.
2004,
126:
10389
7
Oyamada T.
Shao G.
Uchiuzou H.
Nakanotani H.
Orita A.
Otera J.
Yahiro M.
Adachi C.
Jpn. J. Appl. Phys.
2006,
45:
1331
8 A part of optical property of 4-(4-methoxyphenyl-ethynyl)phenylethyne has been reported. See: Shao G.
Orita A.
Nishijima K.
Ishimaru K.
Takezaki M.
Wakamatsu K.
Otera J.
Chem. Lett.
2006,
35:
1284
9
Orita A.
Taniguchi H.
Otera J.
Chem. Asian J.
2006,
1:
430
10
Double Elimination Method for 1 and 7: 1-(3,7-Di-methyloctyloxy)-4-(4-ethynylphenylethynyl)benzene (
1).
To a THF solution (15 mL) of 4-(3,7-dimethyloctyl-oxy)phenylmethyl phenyl sulfone (3, 466 mg, 1.2 mmol), 4-(trimethylsilylethynyl)benzaldehyde (4, 202 mg, 1.0 mmol) and diethylchlorophosphate (0.17 mL, 1.2 mmol) was added a THF solution of LiHMDS (1.0 M, 5.0 mL, 5.0 mmol) at 0 °C, and the mixture was stirred at r.t. for 16 h under argon. After usual work-up, the organic layer was evaporated and the residue was subjected to a column chromatography on silica gel (10% EtOAc-hexane) to give 1-(3,7-dimethyl-octyloxy)-4-[4-(trimethylsilylethynyl)phenyl-ethynyl]benzene in a pure form (358 mg, 83%). To a solution of 1-(3,7-dimethyloctyloxy)-4-[4-(trimethylsilyl-ethynyl)phenylethynyl]benzene (2.15 g, 5.0 mmol) in THF (25 mL) and MeOH (25 mL) was added 6.91 g of K2CO3. The reaction mixture was stirred for 1.5 at r.t. After H2O had been added, the aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO4 and filtered. The solvents were evaporated, and the residue was subjected to column chromatography on silica gel (20% CH2Cl2-hexane) to afford 1 in a pure form (1.63 g, 91%).
Compound 1: 1H NMR (300 MHz, CDCl3): δ = 0.87 (d, J = 6.5 Hz, 6 H), 0.94 (d, J = 6.3 Hz, 3 H), 1.14-1.32 (m, 6 H), 1.48-1.64 (m, 3 H), 1.78-1.84 (m, 1 H), 3.16 (s, 1 H), 3.98-4.03 (m, 2 H), 6.87 (d, J = 8.9 Hz, 2 H), 7.43-7.46 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 19.6, 22.5, 22.6, 24.6, 27.9, 29.8, 36.0, 37.2, 39.2, 66.3, 78.6, 83.3, 87.5, 91.6, 114.5, 114.6, 121.3, 124.1, 131.2, 132.0, 133.0, 159.4.
According to the same procedure, compound 7 was prepared from 3 and 4-iodobenzaldehyde.
Compound 7: 68%. 1H NMR (500 MHz, CDC13): δ = 0.88 (d, J = 6.7 Hz, 6 H), 0.95 (d, J = 6.7 Hz, 3 H), 1.15-1.34 (m, 6 H), 1.52-1.68 (m, 3 H), 1.80-1.85 (m, 1 H), 3.99-4.03 (m, 2 H), 6.88 (d, J = 7.9 Hz, 2 H), 7.24 (d, J = 8.2 Hz, 2 H), 7.45 (d, J = 8.6 Hz, 2 H), 7.68 (d, J = 8.6 Hz, 2 H). 13C NMR (125 HMz CDC13): δ = 19.6, 22.6, 22.7, 24.6, 28.0, 29.8, 36.1, 37.3, 39.2, 66.4, 87.1, 91.0, 93.6, 114.6, 114.6, 123.2, 132.9, 133.0, 137.4, 159.4.
11
Typical Procedure for Sonogashira Coupling.
A 50 mL flask was charged with 7 (318 mg, 0.69 mmol), 1,4-diethyl-2,5-diethynylbenzene (55 mg, 0.30 mmol), Pd(PPh3)4 (34 mg, 0.03 mmol), CuI (5.0 mg, 0.03 mmol), i-Pr2NH (1.0 mL) and toluene (20 mL), and the mixture was heated at 65 °C for 12 h. After filtration, the filtrate was poured into aq NH4Cl and extracted with CH2Cl2. The combined organic layer was washed with brine, dried over MgSO4 and filtered. After evaporation, the residue was subjected to column chromatography to afford 2a as white powder in a pure form (228 mg, 90%).
Compound 2a: mp 151-153 °C. 1H NMR (500 MHz, CDCl3): δ = 0.87 (d, J = 6.7 Hz, 12 H), 0.94 (d, J = 6.4 Hz, 6 H), 1.15-1.20 (m, 6 H), 1.25-1.37 (m, 12 H), 1.50-1.67 (m, 6 H), 1.82-1.85 (m, 2 H), 2.85 (q, J = 7.5 Hz, 4 H), 3.99-4.05 (m, 4 H), 6.88 (d, J = 8.8 Hz, 4 H), 7.39 (s, 2 H), 7.45-7.49 (m, 12 H). 13C NMR (125 MHz, CDCl3): δ = 14.7, 19.6, 22.6, 22.7, 24.6, 27.1, 27.9, 29.8, 36.0, 37.2, 39.2, 66.4, 88.0, 89.8, 91.5, 94.1, 114.5, 114.7, 122.4, 122.7, 123.5, 131.3, 131.4, 131.5, 133.0, 143.4, 159.3. Anal. Calcd for C62H70O2: C, 87.90; H, 8.33. Found: C, 88.12; H, 8.60.
Compound 2b: mp 178-181 °C. 1H NMR (500 MHz, CDCl3): δ = 0.87 (d, J = 6.4 Hz, 12 H), 0.94 (d, J = 6.7 Hz, 6 H), 1.15-1.34 (m, 12 H), 1.50-1.69 (m, 6 H), 1.80-1.86 (m, 2 H), 3.97-4.04 (m, 4 H), 6.87 (d, J = 8.8 Hz, 4 H), 7.17 (s, 2 H), 7.45-7.48 (m, 12 H). 13C NMR (125 MHz, CDCl3): δ = 19.6, 22.6, 22.7, 24.6, 27.9, 29.8, 36.0, 37.2, 39.2, 66.4, 83.9, 87.7, 91.8, 94.0, 114.5, 114.7, 121.8, 123.9, 124.6, 131.3, 131.4, 132.0, 133.0, 159.4. ESI-MS: m/z calcd for C56H60O2S [M + H+]: 797.4; found: 797.3.
Compound 2c: mp 235-238 °C. 1H NMR (500 MHz, CDCl3): δ = 0.87 (d, J = 6.7 Hz, 12 H), 0.94 (d, J = 6.7 Hz, 6 H), 1.15-1.37 (m, 12 H), 1.49-1.67 (m, 6 H), 1.80-1.86 (m, 2 H), 3.97-4.05 (m, 4 H), 6.87 (d, J = 8.8 Hz, 4 H), 7.45-7.50 (m, 10 H), 7.56 (d, J = 8.2 Hz, 4 H), 7.69 (t, J = 7.7 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 19.6, 22.5, 22.6, 24.6, 27.9, 29.8, 36.0, 37.2, 39.2, 66.3, 87.6, 89.4, 89.7, 91.9, 114.5, 114.6, 121.3, 124.4, 126.3, 131.3, 132.0, 133.1, 136.4, 143.6, 159.4. ESI-MS: m/z calcd for C57H61NO2 [M + H+]: 792.3; found: 792.5.
Compound 2d: mp 208-212 °C. 1H NMR (500 MHz, CDCl3): δ = 0.86 (d, J = 6.7 Hz, 12 H), 0.93 (d, J = 6.7 Hz, 6 H), 1.14-1.33 (m, 12 H), 1.50-1.65 (m, 6 H), 1.80-1.84 (m, 2 H), 3.97-4.01 (m, 4 H), 6.77 (d, J = 7.6 Hz, 2 H), 6.85 (d, J = 8.8 Hz, 4 H), 6.91 (s, 2 H), 7.15 (t, J = 7.4 Hz, 2 H), 7.35-7.43 (m, 14 H), 7.55 (d, J = 7.6 Hz, 2 H), 7.82 (d, J = 7.9 Hz, 2 H), 7.87 (d, J = 7.6 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 19.6, 22.5, 22.6, 24.6, 27.9, 29.8, 36.0, 37.2, 39.2, 65.5, 66.3, 87.7, 89.9, 91.3, 91.5, 114.5, 114.7, 120.1, 120.2, 122.4, 122.6, 123.4, 124.1, 127.2, 128.0, 128.1, 131.2, 131.3, 131.5, 133.0, 141.2, 141.7, 147.6, 149.2, 159.3. Anal. Calcd for C77H72O2: C, 89.84; H, 7.05. Found: C, 89.79; H, 7.27.
Compound 2e: mp 263-266 °C. 1H NMR (500 MHz, CDCl3): δ = 0.87 (d, J = 6.4 Hz, 12 H), 0.95 (d, J = 6.4 Hz, 6 H), 1.15-1.37 (m, 12 H), 1.49-1.67 (m, 6 H), 1.80-1.87 (m, 2 H), 2.49 (d, J = 13.4 Hz, 2 H), 3.32 (d, J = 13.4 Hz, 2 H), 3.97-4.05 (m, 4 H), 6.88 (d, J = 8.8 Hz, 4 H), 6.99 (s, 2 H), 7.31 (t, J = 7.1 Hz, 2 H), 7.43-7.56 (m, 20 H), 7.73 (d, J = 7.9 Hz, 2 H), 8.07 (d, J = 8.2 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 19.6, 22.6, 22.7, 24.6, 28.0, 29.8, 36.1, 37.3, 39.2, 42.4, 61.0, 66.4, 87.8, 89.7, 91.5, 91.8, 114.6, 114.8, 120.1, 121.9, 122.7, 123.4, 125.3, 125.8, 127.4, 127.6, 128.0, 128.4, 128.9, 131.3, 131.4, 131.5, 131.9, 133.1, 133.2, 134.5, 135.6, 138.8, 151.4, 159.4. ESI-MS: m/z calcd for C87H80O2 [M + H+]: 1157.5; found: 1157.6.