Subscribe to RSS
DOI: 10.1055/s-2007-968024
Naturally Occurring α-Amino Acid Catalyzed Coupling of Carbon Dioxide with Epoxides to Afford Cyclic Carbonates
Publication History
Publication Date:
24 January 2007 (online)
Abstract
A new and simple method was developed by using the naturally occurring α-amino acids as catalyst for the efficient coupling of carbon dioxide with epoxides to afford the corresponding cyclic carbonates. The cooperation of the ammonium group of one amino acid and the carboxylate ion of another one were proposed as a key activation factor for this transformation.
Key words
amino acids - epoxides - carbon dioxide - coupling reaction - cyclic carbonates
-
1a
Arakawa H.Aresta M.Armor JN.Barteau MA.Beckman EJ.Bell AT.Bercaw JE.Creutz C.Dinjus E.Dixon DA.Domen K.Dubois DL.Eckert J.Fujita E.Gibson DH.Goddard WA.Goodman DW.Keller J.Kubas GJ.Kung HH.Lyons JE.Manzer LE.Marks TJ.Morokuma K.Nicholas KM.Periana R.Que L.Rostrup-Nielson J.Sachtler WMH.Schmidt LD.Sen A.Somorjai GA.Stair PC.Stults BR.Tumas W. Chem. Rev. 2001, 101: 953 -
1b
Beckman EJ. Ind. Eng. Chem. Res. 2003, 42: 1598 -
1c
Shi M.Shen Y.-M. Curr. Org. Chem. 2003, 7: 737 - 2
Darensbourg DJ.Holtcamp MW. Coord. Chem. Rev. 1996, 153: 155 -
3a
Matsumoto K.Fuwa S.Kitajima H. Tetrahedron Lett. 1995, 36: 6499 -
3b
Chang H.-T.Sharpless KB. Tetrahedron Lett. 1996, 37: 3219 -
3c
Shaikh A.-AG.Sivaram S. Chem. Rev. 1996, 96: 951 -
3d
Biggadike K.Angell RM.Burgess CM.Farrell RM.Hancock AP.Harker AJ.Irving WR.Ioannou C.Procopiou PA.Shaw RE.Solanke YE.Singh OMP.Snowden MA.Stubbs RJ.Walton S.Weston HE. J. Med. Chem. 2000, 43: 19 -
4a
Nomura R.Ninagawa A.Matsuda H. J. Org. Chem. 1980, 45: 3735 -
4b
Kihara N.Hara N.Endo T. J. Org. Chem. 1993, 58: 6198 -
4c
Yano T.Mastsui H.Koike T.Ishigure H.Fujihara H.Yoshihara M.Maeshima T. Chem. Commun. 1997, 1129 -
4d
Yamaguchi K.Ebitani K.Yoshida T.Yoshida H.Kaneda K. J. Am. Chem. Soc. 1999, 121: 4526 -
4e
Kawanami H.Ikushima Y. Chem. Commun. 2000, 2089 -
4f
Kim HS.Kim JJ.Lee BG.Jung OS.Jang HG.Kang SO. Angew. Chem. Int. Ed. 2000, 39: 4096 -
4g
Paddock RL.Nguyen ST. J. Am. Chem. Soc. 2001, 123: 11498 -
4h
Caló V.Nacci A.Monopoli A.Fanizzi A. Org. Lett. 2002, 4: 2561 -
4i
Sako T.Fukai T.Sahashi R. Ind. Eng. Chem. Res. 2002, 41: 5353 -
4j
Shen Y.-M.Duan W.-L.Shi M. J. Org. Chem. 2003, 68: 1559 -
4k
Shen Y.-M.Duan W.-L.Shi M. Adv. Synth. Catal. 2003, 345: 337 -
4l
Paddock RL.Hiyama Y.Mckay JM.Nguyen ST. Tetrahedron Lett. 2004, 45: 2023 -
4m
Shen Y.-M.Duan W.-L.Shi M. Eur. J. Org. Chem. 2004, 3080 -
4n
Alvaro M.Baleizao C.Das D.Carbonell E.García H. J. Catal. 2004, 228: 254 -
4o
Li F.Xiao L.Xia C.Hu B. Tetrahedron Lett. 2004, 45: 8307 -
4p
Paddock RL.Nguyen ST. Chem. Commun. 2004, 1622 -
4q
Jiang J.-L.Gao F.Hua R.Qiu X. J. Org. Chem. 2005, 70: 381 -
4r
Sit WN.Ng SM.Kwong KY.Lau CP. J. Org. Chem. 2005, 70: 8583 -
4s
Mori K.Mitani Y.Hara T.Mizugaki T.Ebitani K.Kaneda K. Chem. Commun. 2005, 3331 -
4t
Xie H.Duan H.Li S.Zhang S. New J. Chem. 2005, 29: 1199 -
4u
Du Y.Wang J.-Q.Chen J.-Y.Cai F.Tian J.-S.Kong D.-L.He L.-N. Tetrahedron Lett. 2006, 47: 1271 -
7a
Rokicki A.Kuran W. J. Macromol. Sci., Rev. Macromol. Chem. 1981, C21: 135 -
7b
Darensbourg DJ.Yarbrough JC. J. Am. Chem. Soc. 2002, 124: 6335 -
7c
Darensbourg DJ.Billodeaux DR. Inorg. Chem. 2005, 44: 1433 -
8a
Bonaccorsi R.Palla P.Tomasi J. J. Am. Chem. Soc. 1984, 106: 1945 -
8b
Furic K.Mohacek V.Bonifacic M.Stefanic I. J. Mol. Struct. 1992, 267: 39 -
8c
Jensen JH.Gordon MS. J. Am. Chem. Soc. 1995, 117: 8159 -
8d
Kemp DS.Vellaccio F. Organic Chemistry Worth Publishers, Inc.; New York: 1980. p.1007 -
9a
Baldwin JE. J. Chem. Soc., Chem. Commun. 1976, 734 -
9b
Baldwin JE.Cutting J.Dupont W.Kruse L.Silberman L.Thomas RC. J. Chem. Soc., Chem. Commun. 1976, 736
References and Notes
Typical Experimental Procedure: Propylene oxide (20 mmol), l-phenylalanine (0.16 mmol) and CH2Cl2 (1 mL) were added into a 15 mL stainless autoclave with a magnetic stirrer, and CO2 (liquid, 3.2 MPa) was charged into the reactor at r.t. The initial pressure was generally adjusted to 6 MPa at 130 °C. The autoclave was heated at that temperature for 48 h, and the pressure was kept constant during the reaction. After the reaction, the reactor was cooled to 0 °C, and extra CO2 was vented slowly. The crude product was analyzed by a gas chromatograph, compared with authentic sample, and the yields were determined by GC using tridecane as internal standard. The crude product (yield: 100% by GC) was purified by distillation and propylene carbonate was obtained in 93% isolated yield. The cyclic carbonate was identified by IR, GC/MS (HP6890/5973) and 400 MHz NMR spectroscopy.
6Spectroscopic data of the cyclic carbonates:
4-Methyl-1,3-dioxolan-2-one (2a): IR (neat): 1795 (C=O) cm-1. MS (EI): m/z = 102 [M+]. 1H NMR (400 MHz, TMS, CDCl3): δ = 1.48 (d, J = 3.6 Hz, 3 H, CH3), 4.01 (t, J = 8.4 Hz, 1 H, CH), 4.53 (t, J = 8.0 Hz, 1 H, CH), 4.81-4.86 (m, 1 H, CH).
4-Chloromethyl-1,3-dioxolan-2-one (2b): IR (neat): 1790 (C=O) cm-1. MS (EI): m/z = 136 [M+]. 1H NMR (400 MHz, TMS, CDCl3): δ = 3.72-3.74 (m, 2 H, CH2), 4.38 (q, J = 6.0 Hz, 1 H, CH), 4.57 (t, J = 8.4 Hz, 1 H, CH), 4.91-4.94 (m, 1 H, CH).
4-Phenyl-1,3-dioxolan-2-one (2c): IR (neat): 1816 (C=O) cm-1. MS (EI): m/z = 164 [M+]. 1H NMR (400 MHz, TMS, CDCl3): δ = 4.31-4.35 (m, 1 H, CH), 4.76-4.82 (m, 1 H, CH), 5.66 (t, J = 8.0 Hz, 1 H, CH), 7.32-7.44 (m, 5 H, C6H5).
4-Butyl-1,3-dioxolan-2-one (2d): IR (neat): 1798 (C=O) cm-1. MS (EI): m/z = 145 [M+]. 1H NMR (400 MHz, TMS, CDCl3): δ = 0.91 (t, J = 4.8 Hz, 3 H, CH3), 1.32-1.38 (m, 4 H, CH2), 1.65-1.78 (m, 2 H, CH2), 4.04 (dd, J = 7.2, 8.4 Hz, 1 H, CH), 4.50 (t, J = 8.0 Hz, 1 H, CH), 4.64-4.71 (m, 1 H, CH).
4-Phenoxymethyl-1,3-dioxolan-2-one (2e): IR (neat): 1796 (C=O) cm-1. MS (EI): m/z = 194 [M+]. 1H NMR (400 MHz, TMS, CDCl3): δ = 4.13 (dd, J = 3.6, 10.4 Hz, 1 H, CH), 4.22 (dd, J = 4.0, 10.4 Hz, 1 H, CH), 4.52 (dd, J = 6.0, 8.8 Hz, 1 H, CH), 4.60 (t, J = 4.4 Hz, 1 H, CH), 4.99-5.02 (m, 1 H, CH), 6.89 (d, J = 7.6 Hz, 2 H, Ph), 7.00 (t, J = 7.6 Hz, 1 H, Ph), 7.29 (dd, J = 7.6, 8.4 Hz, 2 H, Ph).
4-Allyloxymethyl-1,3-dioxolan-2-one (2f): IR (neat): 1796 (C=O) cm-1. MS (EI): m/z = 159 [M+ + H]. 1H NMR (400 MHz, TMS, CDCl3): δ = 3.21-3.68 (m, 2 H, CH2), 4.02-4.04 (m, 2 H, CH2), 4.37 (dd, J = 6.0, 8.4 Hz, 1 H, CH), 4.48 (t, J = 8.4 Hz, 1 H, CH), 4.75-4.80 (m, 1 H, CH), 5.18-5.28 (m, 2 H, CH2), 5.81-5.87 (m, 1 H, CH).
Cyclohexyl-1,3-dioxolan-2-one (2g): IR (neat): 1801 (C=O) cm-1. MS (EI): m/z = 142 [M+]. 1H NMR (400 MHz, TMS, CDCl3): δ = 1.37-1.41 (m, 2 H, CH2), 1.57-1.61 (m, 2 H, CH2), 1.85-1.89 (m, 4 H, CH2), 4.63-4.68 (m, 2 H, CH).