References and Notes
1a
Caffyn AJ.
Nicholas KM.
Comprehensive Organometallic Chemistry II
Vol. 12:
Abel EW.
Stone FG.
Wilkinson G.
Hegedus LS.
Pergamon;
Oxford:
1995.
Chap. 7.1.
1b
Nicholas KM.
Acc. Chem. Res.
1987,
20:
207
1c
Green JR.
Curr. Org. Chem.
2001,
5:
809
1d
Teobald BJ.
Tetrahedron
2002,
58:
4133
2a
Salazar KL.
Nicholas KM.
Tetrahedron
2000,
56:
2211
2b
Salazar KL.
Masood AK.
Nicholas KM.
J. Am. Chem. Soc.
1997,
119:
9053
2c
Lake K.
Dorrell M.
Blackman N.
Khan MA.
Nicholas KM.
Organometallics
2003,
22:
4260
2d
Melykian GG.
Combs RC.
Lamirand J.
Khan M.
Nicholas KM.
Tetrahedron Lett.
1994,
35:
363
3a
Melikyan GG.
Villena F.
Sepanian S.
Pulido M.
Sarkissian H.
Florut A.
Org. Lett.
2003,
5:
3395
3b
Melikyan GG.
Deravakian A.
Myer S.
Yadegar S.
Hardcastle KI.
Ciurash J.
Toure P.
J. Organomet. Chem.
1999,
578:
68
3c
Melikyan GG.
Sepanian S.
Riahi B.
Villena F.
Jerome J.
Ahrens B.
McClain R.
Matchett J.
Scanlon S.
Abrenica E.
Pausen K.
Hardcastle KI.
J. Organomet. Chem.
2003,
683:
324
3d
Melikyan GG.
Vostrowsky O.
Bauer W.
Bestmann HJ.
Khan M.
Nicholas KM.
J. Org. Chem.
1994,
59:
222
For the synthesis of fused ring systems, see:
4a
Tyrrell E.
Claridge S.
Davis R.
Lebel J.
Berge J.
Synlett
1995,
714
4b
Berge J.
Claridge S.
Mann A.
Muller C.
Tyrrell E.
Tetrahedron Lett.
1997,
38:
685
4c
Tyrrell E.
Tillett C.
Tetrahedron Lett.
1998,
39:
9535
4d
Tyrrell E.
Skinner GA.
Bashir T.
Synlett
2001,
1929
5
Krafft ME.
Cheung YY.
Wright C.
Cali R.
J. Org. Chem.
1996,
61:
3912
6
Nakamura T.
Matsui T.
Tanino K.
Kuwajima I.
J. Org. Chem.
1997,
62:
3032
For intramolecular trapping with allylsilanes, see:
7a
Lu Y.
Green JR.
Synlett
2001,
243
7b
Patel MM.
Green JR.
Chem. Commun.
1999,
509
8 The axial protons in the α-position relative to either the complexed triple bond or the halide are characterized by triplet of triplet patterns (J = 11.6-12.1 and 3.0-3.6 Hz; dtt were observed for protons α to fluorine).
9
Top S.
Jaouen G.
J. Org. Chem.
1981,
46:
78
10
Typical Experimental Procedure for the Preparation of Cyclic Halides
In a typical experiment dicobalt hexacarbonyl complex 1c (0.41 mmol, 200 mg, 1.0 equiv) was dissolved in CH2Cl2 (3.5 mL, i.e., 8 mL/1 mmol) and 2.0 equiv of HBF4 (112 µL, 0.82 mmol) was added under nitrogen. After stirring for 10 min at r.t., the reaction mixture was concentrated under reduced pressure. The crude product was purified by liquid chromatography on silica gel eluting with pentane to afford 4c (133 mg, 0.27 mmol, 67%) as a mixture of two diastereomers in a 66:34 ratio.
Hexacarbonyl[-η
4
-{[(3-fluorocyclohexyl)ethynyl]benz-ene}]dicobalt (
4c)
Compound cis-4c: 1H NMR (300 MHz, CDCl3): δ = 1.23-1.39 (m, 2 H), 1.58-1.58 (m, 3 H), 1.98-2.24 (m, 2 H), 2.53 (br s, 1 H), 3.04 (br t, 1 H, J = 11.9 Hz), 4.68 (dtt, 1 H,
²
J
HF
= 48.3 Hz, J = 10.2, 5.1 Hz), 7.28-7.40 (m, 3 H), 7.49-7.52 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 23.5 (d,
³
J
CF
= 12.0 Hz, CH2), 32.8 (d,
²
J
CF
= 18.0 Hz, CH2), 34.5 (CH2), 40.3 (d,
³
J
CF
= 12.0 Hz, CH), 41.6 (d,
²
J
CF
= 18.0 Hz, CH2), 91.7 (d,
¹
J
CF
= 174.0 Hz, CH), 97.0 (C), 104.0 (C), 128.1 (CH), 129.3 (CH), 129.5 (CH), 138.5 (C), 200.1 (CO). 19F NMR (286 MHz, CDCl3): δ = -168.5.
Compound trans-4c: 1H NMR (300 MHz, CDCl3): δ = 1.32-1.62 (m, 3 H), 1.74 (m, 1 H), 1.90 (qt, 1 H, J = 13.6, 3.6 Hz), 2.07-2.17 (m, 2 H), 2.43 (m, 1 H), 3.42 (tt, 1 H, J = 12.1, 3.2 Hz), 5.04 (br d, 1 H,
²
J
HF
= 47.6 Hz), 7.28-7.50 (m, 3 H), 7.52-7.54 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 20.7 (CH2), 30.5 (d,
²
J
CF
= 21.0 Hz, CH2), 34.9 (CH2), 36.3 (CH), 39.7 (d,
²
J
CF
= 21.0 Hz, CH2), 89.5 (d,
¹
J
CF
= 168.0 Hz, CH), 91.8 (C), 105.4 (C), 128.1 (CH), 129.3 (CH), 129.6 (CH), 138.6 (C), 200.1 (CO). 19F NMR (286 MHz, CDCl3): δ = -183.3.
Anal. Calcd for C19H15Co2FO5: C, 49.59; H, 3.29. Found: C, 49.96; H, 3.30.
[13]
Typical Experimental Procedure for the Preparation of Cyclic Amides
In a typical experiment, dicobalt hexacarbonyl complex 1c (200 mg, 0.41 mmol, 1.0 equiv) was dissolved in MeCN (4 mL, 9 mL/1 mmol) and 1.1 equiv of TfOH (40 µL, 0.45 mmol) was added under nitrogen. After stirring for 10 min at r.t., the reaction mixture was quenched with H2O and extracted with CH2Cl2 (2×). The combined organic layers were washed with brine, dried over MgSO4 and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with 50:50 pentane-EtOAc to afford 5c (198 mg, 0.38 mmol, 92%) as a single cis-isomer.
cis
-Hexacarbonyl[µ-η
4
-{
N
-[(3-phenylethynyl)cyclo-hexyl]acetamide}]dicobalt (
5c)
1H NMR (300 MHz, CDCl3): δ = 1.11-1.32 (m, 4 H), 1.63 (qt, 1 H, J = 13.2, 3.0 Hz), 1.98 (s, 3 H), 2.06-2.13 (m, 2 H), 2.30-2.38 (m, 1 H), 3.11 (tt, 1 H, J = 11.5, 3.4 Hz), 4.04 (tdt, 1 H, J = 11.9, 8.3, 3.6 Hz), 5.44 (br d, 1 H, J = 8.3 Hz, NH), 7.29-7.45 (m, 3 H), 7.48-7.52 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 22.5 (CH3), 23.7 (CH2), 32.0 (CH2), 33.6 (CH2), 39.7 (CH), 40.4 (CH2), 47.0 (CH), 90.4 (C), 103.1 (C), 127.6 (CH), 127.9 (CH), 128.1 (CH), 137.1 (C), 168.1 (CO), 198.6 (CO).
HRMS (TOF MS ES+): m/z calcd [M + 1] for C22H19NO7Co2 [MH+]: 527.9898; found: 527.9898.
11a
Schreiber SL.
Sammakia T.
Crowe WE.
J. Am. Chem. Soc.
1986,
108:
3128
11b
Green JR.
Chem. Commun.
1998,
1751
11c
Guo R.
Green JR.
Synlett
2000,
746
11d
DiMartino J.
Green JR.
Tetrahedron
2006,
62:
1402
11e
Konno T.
Nagaï G.
Ishihara T.
J. Fluorine Chem.
2006,
127:
510
11f
Takano S.
Sugihara T.
Ogasawara K.
Synlett
1991,
70
11g
Shibuya S.
Isobe M.
Synlett
1998,
373
11h
Shibuya S.
Isobe M.
Tetrahedron
1998,
54:
6677
For a nucleophilicity scale of carbon-centered nucleophiles in intermolecular reactions, see:
12a
Mayr H.
Kempf B.
Ofial AR.
Acc. Chem. Res.
2003,
36:
66
12b
Mayr H.
Kuhn O.
Schlierf C.
Ofial AR.
Tetrahedron
2000,
56:
4219
13 Elemental analysis is in agreement with the loss of carbon monoxide during the inlet of the sample in the combustion chamber. Unfortunately, HRMS could not be obtained. This compound of low polarity could not be ionized by the electrospray technique at our disposal.