Abstract
The Baylis-Hillman reaction was greatly accelerated by use of octanol as an additive. Under the octanol-accelerated Baylis-Hillman conditions, unactivated aldehydes such as aliphatic aldehydes and aromatic aldehydes with electron-withdrawing substituents were readily converted into the desired products in good to high yields.
Key words
Baylis-Hillman reaction - octanol - additive - rate acceleration - aliphatic aldehydes
References and Notes
1a
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
1b
Ciganek E.
Org. React.
1997,
51:
201
1c
Langer P.
Angew. Chem. Int. Ed.
2000,
39:
3049
1d
Basavaiah D.
Rao AJ.
Satyanayana T.
Chem. Rev.
2003,
103:
811
2a
Kataoka T.
Kinoshita H.
Kinoshita S.
Iwamura T.
Watanabe S.
Angew. Chem. Int. Ed.
2000,
39:
2358
2b
Shi M.
Jiang J.-K.
Feng YS.
Org. Lett.
2000,
2:
2397
2c
Shi M.
Jiang JK.
Tetrahedron
2000,
56:
4793
2d
Li G.
Wei HX.
Gao JJ.
Caputo TD.
Tetrahedron Lett.
2000,
41:
1
2e
Shi M.
Feng YS.
J. Org. Chem.
2001,
66:
406
2f
Shi M.
Jiang J.-K.
Cui S.-C.
Tetrahedron
2001,
57:
7343
2g
Patra A.
Batra S.
Joshi BS.
Roy R.
Kundu B.
Bhaduri AP.
J. Org. Chem.
2002,
67:
5783
2h
Basavaiah D.
Sreenivasulu B.
Rao AJ.
J. Org. Chem.
2003,
68:
5983
2i
Pei W.
Wei H.
Li G.
Chem. Commun.
2002,
1856
2j
Pei W.
Wei H.
Li G.
Chem. Commun.
2002,
2412
2k
Kinoshita H.
Kinoshita S.
Munechika Y.
Iwamura T.
Watanabe S.
Kataoka T.
Eur. J. Org. Chem.
2003,
4852
2l
Kinoshita H.
Osamura T.
Kinoshita S.
Iwamura T.
Watanabe S.
Kataoka T.
Tanabe G.
Muraoka O.
J. Org. Chem.
2003,
68:
7532
3
Kundu MK.
Mukherjee SB.
Balu N.
Padmakumar R.
Bhat SV.
Synlett
1994,
444
4a
Drewes SE.
Roos GHP.
Tetrahedron
1988,
44:
4653
4b
Basavaiah D.
Dharma Rao P.
Suguna Hyma R.
Tetrahedron
1996,
52:
8001
4c
Ciganek E. In Organic Reactions
Vol. 51:
Paquette LA.
Wiley;
New York:
1997.
p.201
5a
Ameer F.
Drewes SE.
Freese S.
Kaye PT.
Synth. Commun.
1988,
18:
495
5b
Drewes SE.
Freese S.
Emslie ND.
Roos GHP.
Synth. Commun.
1988,
18:
1565
5c
Basavaiah D.
Sarma PKS.
Synth. Commun.
1990,
20:
1611
5d
Bailey M.
Marko IE.
Ollis WD.
Rasmussen PR.
Tetrahedron Lett.
1990,
31:
4509
6
Auge J.
Lubin N.
Lubineau A.
Tetrahedron Lett.
1994,
35:
7947
7a
Almeida WP.
Coelho F.
Tetrahedron Lett.
1998,
39:
8609
7b
Coelho F.
Almeida WP.
Veronese D.
Mateus CR.
Silva Lopes EC.
Rossi RC.
Silveira GPC.
Pavam CH.
Tetrahedron
2002,
58:
7437
8a
Hill JS.
Isaacs NS.
Tetrahedron Lett.
1986,
27:
5007
8b
Hill JS.
Isaacs NS.
J. Chem. Res., Synop.
1988,
330
8c
Schuurman RJW.
v. d. Linden A.
Grimbergen RPF.
Nolte RJM.
Scheeren HW.
Tetrahedron
1996,
52:
8307
9
Shi M.
Liu Y.-H.
Org. Biomol. Chem.
2006,
4:
1468
10
Aggarwal VK.
Fulford SY.
Lloyd-Jones GC.
Angew. Chem. Int. Ed.
2005,
44:
1706
11
Spectroscopic Data for Compound 4.
IR (neat): 3415, 1665, 1635, 1088 cm-1 . 1 H NMR (400 MHz, CDCl3 ): δ = 1.32 (d, J = 6.5 Hz, 3 H), 2.36 (s, 3 H), 3.31 (br s, 1 H), 4.66 (br s, 1 H), 6.08 (s, 1 H), 6.11 (s, 1 H). 13 C NMR (100 MHz, CDCl3 ): δ = 200.19, 151.09, 124.27, 65.89, 25.90, 21.76. HRMS (ESI): m /z calcd for C6 H10 O2 [M + H]: 114.0681; found: 114.0685.
Spectroscopic Data for Compound 6.
1 H NMR (400 MHz, CDCl3 ): δ = 6.04 (s, 1 H), 5.85 (s, 1 H), 2.61-2.57 (m, 1 H), 2.55-2.50 (m, 1 H), 2.34 (s, 3 H), 2.13 (s, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 207.59, 199.24, 147.52, 126.01, 42.20, 29.47, 25.61, 25.05.
12
MacCallum JL.
Tieleman DP.
J. Am. Chem. Soc.
2002,
124:
15085