References and Notes
1
Larock RC.
Comprehensive Organic Transformations. A Guide to Functional Group Preparation
VCH;
New York:
1989.
2
Cristau HJ.
Ouali A.
Spindler JF.
Taillefer M.
Chem. Eur. J.
2005,
11:
2483
3
Kleemann A.
Engel J.
Kutscher B.
Reichert D.
Pharmaceutical Substances: Synthesis, Patents, Applications
4th ed.:
Georg Thieme Verlag;
Stuttgart:
2001.
4
Sundermeier M.
Zapf A.
Beller M.
Eur. J. Inorg. Chem.
2003,
3513
5
Chobanian HR.
Fors BP.
Lin LS.
Tetrahedron Lett.
2006,
47:
3303
6
Schareina T.
Zapf A.
Beller M.
Chem. Commun.
2004,
1388
7
Schareina T.
Zapf A.
Beller M.
J. Organomet. Chem.
2004,
689:
4576
8
Weissman SA.
Zewge D.
Chen C.
J. Org. Chem.
2005,
70:
1508
9
Grossman O.
Gelman D.
Org. Lett.
2006,
8:
1189
10
Li LH.
Pan ZL.
Duan XH.
Liang YM.
Synlett
2006,
2094
11
Schareina T.
Zapf A.
Beller M.
Tetrahedron Lett.
2005,
46:
2585
12
Wu YJ.
Hou JJ.
Yun HY.
Cui XL.
Yuan RJ.
J. Organomet. Chem.
2001,
637-639:
793
13
Zhang JL.
Zhao L.
Song MP.
Mak TCW.
Wu YJ.
J. Organomet. Chem.
2006,
691:
1301
14
Gong JF.
Liu GY.
Du CX.
Zhu Y.
Wu YJ.
J. Organomet. Chem.
2005,
690:
3963
15
Sundermeier M.
Zapf A.
Beller M.
Sans J.
Tetrahedron Lett.
2001,
42:
6707
16
Jin F.
Confalone PN.
Tetrahedron Lett.
2000,
41:
3271
17
Huo SQ.
Wu YJ.
Du CX.
Zhu Y.
Yuan HZ.
Mao XA.
J. Organomet. Chem.
1994,
483:
139
18
Littke AF.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
4176
19
General Procedure.
A reaction vessel was charged with 1 mmol Na2CO3, 0.22 mmol K4[Fe(CN)6]·3H2O and 2% mol catalyst 2a. The vessel was then evacuated and backfilled with N2 four times. Then, 1 mmol aryl chloride in 1 mL NMP was added to the vessel. The mixture was heated at 140 °C for 16-24 h. The suspension was cooled down to r.t., diluted with 5 mL CH2Cl2 and washed with 5 mL H2O. The aqueous layer was extracted twice with CH2Cl2 (3 mL) and the combined organic layers were dried over MgSO4. After evaporation of the solvents the residue was subjected to TLC (hexane-EtOAc). All prepared compounds were known and identified by 1H NMR, 13C NMR and MS.
Selected Data.
Compound 4c: 1H NMR (400 MHz, CDCl3): δ = 2.53 (s, 6 H), 7.11 (d, J = 7.7 Hz, 2 H), 7.34 (dd, J = 7.7 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 20.8, 113.3, 117.3, 127.3, 132.1, 142.1 ppm. MS (ESI): m/z = 154.1 [M + Na]+.
Compound 4e: 1H NMR (400 MHz, CDCl3): δ = 3.87 (s, 3 H), 6.95 (d, J = 8.9 Hz, 2 H), 7.58 (d, J = 8.9 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 55.3, 103.7, 114.5, 119.0, 133.7, 162.6 ppm. MS (ESI): m/z = 156.0 [M + Na]+.
Compound 4i: 1H NMR (400 MHz, CDCl3): δ = 1.42 (t, J = 7.2 Hz, 3 H), 4.42 (q, J = 7.1 Hz, 2 H), 7.74 (d, J = 8.3 Hz, 2 H), 8.14 (d, J = 8.3 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 14.0, 61.6, 116.0, 117.8, 129.8, 131.9, 134.1, 164.7 ppm. MS (ESI): m/z = 197.8 [M + Na]+.
Compound 4j: 1H NMR (400 MHz, CDCl3): δ = 7.45 (m, 1 H), 7.98 (m, 1 H), 8.83 (m, 1 H), 8.91 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 110.3, 116.5, 123.6, 139.3, 152.5, 153.0 ppm. MS (ESI): m/z = 105.0 [M + H]+.
20
Kataoka N.
Shelby Q.
Stambuli JP.
Hartwig JF.
J. Org. Chem.
2002,
67:
5553
21
Wolfe JP.
Tomori H.
Sadighi JP.
Yin JJ.
Buchwald SL.
J. Org. Chem.
2000,
65:
1158