Semin Reprod Med 2007; 25(3): 208-220
DOI: 10.1055/s-2007-973433
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Non-Genomic Steroid Actions in Human Spermatozoa

“Persistent Tickling from a Laden Environment”Joao Natalino Correia1 , 2 , Sarah J. Conner1 , 2 , Jackson C. Kirkman-Brown1 , 2
  • 1Centre for Human Reproductive Science (ChRS), Assisted Conception Unit, Birmingham Women's Hospital NHS Trust Edgbaston, Birmingham, United Kingdom
  • 2Reproductive Biology and Genetics Institute of Biomedical Research-West Extension, Medical School, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
Further Information

Publication History

Publication Date:
20 April 2007 (online)

ABSTRACT

As sperm traverse the female tract from vagina to oocyte, they experience a steroid milieu, which due to transcriptional inactivity, they can only respond to via non-genomic signaling. This environment mediates events including capacitation, changes in motility patterns, chemotaxis, and acrosome reaction. Current knowledge of the events, calcium signaling pathways, and potential identity of receptors involved is reviewed in light of recent data, with a context for further work in the field, and emphasizing the importance of steroids as a mixed stimulant. Progesterone receptor candidates are considered in light of recent findings, including novel classes of receptors such as a progesterone membrane receptor component-1 or -2 complex with serpine-1 mRNA binding protein, the best candidate so far for progesterone activity in human sperm. Given the number of other alternative candidates and the apparent diversity of the signaling pathways activated, the presence of multiple species of progesterone receptors should not be excluded. Given that sperm dysfunction is the most common defined cause of infertility, advances in our currently limited knowledge of these pathways and events are crucial to not only create better therapies but also improve rational diagnosis.

REFERENCES

  • 1 Hull M G, Glazener C M, Kelly N J et al.. Population study of causes, treatment, and outcome of infertility.  Br Med J (Clin Res Ed). 1985;  291 1693-1697
  • 2 Andersen A N, Gianaroli L, Felberbaum R, de Mouzon J, Nygren K G. Assisted reproductive technology in Europe, 2001. Results generated from European registers by ESHRE.  Hum Reprod. 2005;  20 1158-1176
  • 3 Gur Y, Breitbart H. Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes.  Genes Dev. 2006;  20 411-416
  • 4 Turner T T. On the epididymis and its role in the development of the fertile ejaculate.  J Androl. 1995;  16 292-298
  • 5 Turner T T, Johnston D S, Jelinsky S A. Epididymal genomics and the search for a male contraceptive.  Mol Cell Endocrinol. 2006;  250 178-183
  • 6 Eddy E M, Washburn T F, Bunch D O et al.. Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility.  Endocrinology. 1996;  137 4796-4805
  • 7 Hess R A, Zhou Q, Nie R et al.. Estrogens and epididymal function.  Reprod Fertil Dev. 2001;  13 273-283
  • 8 Gibbs G M, Scanlon M J, Swarbrick J et al.. The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2 + signaling.  J Biol Chem. 2006;  281 4156-4163
  • 9 Nolan M A, Wu L, Bang H J et al.. Identification of rat cysteine-rich secretory protein 4 (Crisp4) as the ortholog to human CRISP1 and mouse Crisp4.  Biol Reprod. 2006;  74 984-991
  • 10 Ellerman D A, Cohen D J, Da Ros V G, Morgenfeld M M, Busso D, Cuasnicu P S. Sperm protein “DE” mediates gamete fusion through an evolutionarily conserved site of the CRISP family.  Dev Biol. 2006;  297 228-237
  • 11 Palmerini C A, Saccardi C, Carlini E, Fabiani R, Arienti G. Fusion of prostasomes to human spermatozoa stimulates the acrosome reaction.  Fertil Steril. 2003;  80 1181-1184
  • 12 Arienti G, Carlini E, Saccardi C, Palmerini C A. Nitric oxide and fusion with prostasomes increase cytosolic calcium in progesterone-stimulated sperm.  Arch Biochem Biophys. 2002;  402 255-258
  • 13 Bjorndahl L, Kvist U. Sequence of ejaculation affects the spermatozoon as a carrier and its message.  Reprod Biomed Online. 2003;  7 440-448
  • 14 Austin C R. The capacitation of the mammalian sperm.  Nature. 1952;  170 326
  • 15 Chang M C. An experimental analysis of female sterility in the rabbit.  Fertil Steril. 1952;  3 251-262
  • 16 Chang M C. The meaning of sperm capacitation. A historical perspective.  J Androl. 1984;  5 45-50
  • 17 Ficarro S, Chertihin O, Westbrook V A et al.. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation.  J Biol Chem. 2003;  278 11579-11589
  • 18 Bjorndahl L, Kirkman-Brown J, Hart G, Rattle S, Barratt C L. Development of a novel home sperm test.  Hum Reprod. 2006;  21 145-149
  • 19 De Jonge C. Biological basis for human capacitation.  Hum Reprod Update. 2005;  11 205-214
  • 20 Ford W C. Regulation of sperm function by reactive oxygen species.  Hum Reprod Update. 2004;  10 387-399
  • 21 Fraser L R, Adeoya-Osiguwa S A, Baxendale R W, Gibbons R. Regulation of mammalian sperm capacitation by endogenous molecules.  Front Biosci. 2006;  11 1636-1645
  • 22 Yeung W S, Lee K F, Koistinen R et al.. Roles of glycodelin in modulating sperm function.  Mol Cell Endocrinol. 2006;  250 149-156
  • 23 Eisenbach M, Giojalas L C. Sperm guidance in mammals-an unpaved road to the egg.  Nat Rev Mol Cell Biol. 2006;  7 276-285
  • 24 Fauci L J, McDonald A. Sperm motility in the presence of boundaries.  Bull Math Biol. 1995;  57 679-699
  • 25 Hunter R H. The Fallopian tubes in domestic mammals: how vital is their physiological activity?.  Reprod Nutr Dev. 2005;  45 281-290
  • 26 Wilcox A J, Weinberg C R, Baird D D. Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby.  N Engl J Med. 1995;  333 1517-1521
  • 27 Williams M, Hill C J, Scudamore I, Dunphy B, Cooke I D, Barratt C L. Sperm numbers and distribution within the human fallopian tube around ovulation.  Hum Reprod. 1993;  8 2019-2026
  • 28 DeMott R P, Lefebvre R, Suarez S S. Carbohydrates mediate the adherence of hamster sperm to oviductal epithelium.  Biol Reprod. 1995;  52 1395-1403
  • 29 Pacey A A, Hill C J, Scudamore I W, Warren M A, Barratt C L, Cooke I D. The interaction in vitro of human spermatozoa with epithelial cells from the human uterine (fallopian) tube.  Hum Reprod. 1995;  10 360-366
  • 30 Morales P, Palma V, Salgado A M, Villalon M. Sperm interaction with human oviductal cells in vitro.  Hum Reprod. 1996;  11 1504-1509
  • 31 Baillie H S, Pacey A A, Warren M A, Scudamore I W, Barratt C L. Greater numbers of human spermatozoa associate with endosalpingeal cells derived from the isthmus compared with those from the ampulla.  Hum Reprod. 1997;  12 1985-1992
  • 32 Tardif S, Lefievre L, Gagnon C, Bailey J L. Implication of cAMP during porcine sperm capacitation and protein tyrosine phosphorylation.  Mol Reprod Dev. 2004;  69 428-435
  • 33 Conner S J, Lefievre L, Hughes D C, Barratt C L. Cracking the egg: increased complexity in the zona pellucida.  Hum Reprod. 2005;  20 1148-1152
  • 34 Benoff S, Barcia M, Hurley I R et al.. Classification of male factor infertility relevant to in-vitro fertilization insemination strategies using mannose ligands, acrosome status and anti-cytoskeletal antibodies.  Hum Reprod. 1996;  11 1905-1918
  • 35 Yanagimachi R. Fertility of mammalian spermatozoa: its development and relativity.  Zygote. 1994;  2 371-372
  • 36 Primakoff P, Myles D G. Penetration, adhesion, and fusion in mammalian sperm-egg interaction.  Science. 2002;  296 2183-2185
  • 37 Munuce M J, Quintero I, Caille A M, Ghersevich S, Berta C L. Comparative concentrations of steroid hormones and proteins in human peri-ovulatory peritoneal and follicular fluids.  Reprod Biomed Online. 2006;  13 202-207
  • 38 Westergaard L, Christensen I J, McNatty K P. Steroid levels in ovarian follicular fluid related to follicle size and health status during the normal menstrual cycle in women.  Hum Reprod. 1986;  1 227-232
  • 39 Osman R A, Andria M L, Jones A D, Meizel S. Steroid induced exocytosis: the human sperm acrosome reaction.  Biochem Biophys Res Commun. 1989;  160 828-833
  • 40 Lambard S, Carreau S. Aromatase and oestrogens in human male germ cells.  Int J Androl. 2005;  28 254-259
  • 41 Aquila S, Sisci D, Gentile M, Middea E, Siciliano L, Ando S. Human ejaculated spermatozoa contain active P450 aromatase.  J Clin Endocrinol Metab. 2002;  87 3385-3390
  • 42 Oehninger S, Sueldo C, Lanzendorf S et al.. A sequential analysis of the effect of progesterone on specific sperm functions crucial to fertilization in vitro in infertile patients.  Hum Reprod. 1994;  9 1322-1327
  • 43 Krausz C, Bonaccorsi L, Luconi M et al.. Intracellular calcium increase and acrosome reaction in response to progesterone in human spermatozoa are correlated with in-vitro fertilization.  Hum Reprod. 1995;  10 120-124
  • 44 Plant A, McLaughlin E A, Ford W C. Intracellular calcium measurements in individual human sperm demonstrate that the majority can respond to progesterone.  Fertil Steril. 1995;  64 1213-1215
  • 45 Tanghe S, Van Soom A, Sterckx V, Maes D, de Kruif A. Assessment of different sperm quality parameters to predict in vitro fertility of bulls.  Reprod Domest Anim. 2002;  37 127-132
  • 46 Krausz C, Bonaccorsi L, Maggio P et al.. Two functional assays of sperm responsiveness to progesterone and their predictive values in in-vitro fertilization.  Hum Reprod. 1996;  11 1661-1667
  • 47 Forti G, Baldi E, Krausz C et al.. Effects of progesterone on human spermatozoa: clinical implications.  Ann Endocrinol (Paris). 1999;  60 107-110
  • 48 Giojalas L C, Iribarren P, Molina R, Rovasio R A, Estofan D. Determination of human sperm calcium uptake mediated by progesterone may be useful for evaluating unexplained sterility.  Fertil Steril. 2004;  82 738-740
  • 49 Evans J P, Florman H M. The state of the union: the cell biology of fertilization.  Nat Cell Biol. 2002;  4(suppl) s57-s63
  • 50 Blackmore P F, Beebe S J, Danforth D R, Alexander N. Progesterone and 17 alpha-hydroxyprogesterone. Novel stimulators of calcium influx in human sperm.  J Biol Chem. 1990;  265 1376-1380
  • 51 Baldi E, Casano R, Falsetti C, Krausz C, Maggi M, Forti G. Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa.  J Androl. 1991;  12 323-330
  • 52 Yang J, Serres C, Philibert D, Robel P, Baulieu E E, Jouannet P. Progesterone and RU486: opposing effects on human sperm.  Proc Natl Acad Sci USA. 1994;  91 529-533
  • 53 Bonaccorsi L, Luconi M, Forti G, Baldi E. Tyrosine kinase inhibition reduces the plateau phase of the calcium increase in response to progesterone in human sperm.  FEBS Lett. 1995;  364 83-86
  • 54 Aitken R J, Buckingham D W, Irvine D S. The extragenomic action of progesterone on human spermatozoa: evidence for a ubiquitous response that is rapidly down-regulated.  Endocrinology. 1996;  137 3999-4009
  • 55 Tesarik J, Carreras A, Mendoza C. Single cell analysis of tyrosine kinase dependent and independent Ca2 + fluxes in progesterone induced acrosome reaction.  Mol Hum Reprod. 1996;  2 225-232
  • 56 Kirkman-Brown J C, Bray C, Stewart P M, Barratt C L, Publicover S J. Biphasic elevation of [Ca(2 +)](i) in individual human spermatozoa exposed to progesterone.  Dev Biol. 2000;  222 326-335
  • 57 Clapham D E. Calcium signaling.  Cell. 1995;  80 259-268
  • 58 Ho H C, Granish K A, Suarez S S. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2 + and not cAMP.  Dev Biol. 2002;  250 208-217
  • 59 Spehr M, Gisselmann G, Poplawski A et al.. Identification of a testicular odorant receptor mediating human sperm chemotaxis.  Science. 2003;  299 2054-2058
  • 60 Spehr M, Schwane K, Riffell J A et al.. Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis.  J Biol Chem. 2004;  279 40194-40203
  • 61 Florman H M, Tombes R M, First N L, Babcock D F. An adhesion-associated agonist from the zona pellucida activates G protein-promoted elevations of internal Ca2 + and pH that mediate mammalian sperm acrosomal exocytosis.  Dev Biol. 1989;  135 133-146
  • 62 Florman H M, Corron M E, Kim T D, Babcock D F. Activation of voltage-dependent calcium channels of mammalian sperm is required for zona pellucida-induced acrosomal exocytosis.  Dev Biol. 1992;  152 304-314
  • 63 Somanath P R, Suraj K, Gandhi K K. Caprine sperm acrosome reaction: promotion by progesterone and homologous zona pellucida.  Small Rumin Res. 2000;  37 279-286
  • 64 Tosti E, Di Cosmo A, Cuomo A, Di Cristo C, Gragnaniello G. Progesterone induces activation in Octopus vulgaris spermatozoa.  Mol Reprod Dev. 2001;  59 97-105
  • 65 Harper C V, Kirkman-Brown J C, Barratt C L, Publicover S J. Encoding of progesterone stimulus intensity by intracellular [Ca2 +] ([Ca2 +]i) in human spermatozoa.  Biochem J. 2003;  372 407-417
  • 66 Blackmore P F, Eisoldt S. The neoglycoprotein mannose-bovine serum albumin, but not progesterone, activates T-type calcium channels in human spermatozoa.  Mol Hum Reprod. 1999;  5 498-506
  • 67 Garcia M A, Meizel S. Progesterone-mediated calcium influx and acrosome reaction of human spermatozoa: pharmacological investigation of T-type calcium channels.  Biol Reprod. 1999;  60 102-109
  • 68 Kirkman-Brown J C, Barratt C L, Publicover S J. Nifedipine reveals the existence of two discrete components of the progesterone-induced [Ca2 +]i transient in human spermatozoa.  Dev Biol. 2003;  259 71-82
  • 69 Fraire-Zamora J J, Gonzalez-Martinez M T. Effect of intracellular pH on depolarization-evoked calcium influx in human sperm.  Am J Physiol Cell Physiol. 2004;  287 C1688-C1696
  • 70 Bedu-Addo K, Barratt C L, Kirkman-Brown J C, Publicover S J. Patterns of [Ca(2 +)](i) mobilization and cell response in human spermatozoa exposed to progesterone.  Dev Biol. 2007;  302 324-332
  • 71 Baldi E, Casano R, Falsetti C, Krausz C, Maggi M, Forti G. Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa.  J Androl. 1991;  12 323-330
  • 72 Yang J, Serres C, Philibert D, Robel P, Baulieu E E, Jouannet P. Progesterone and RU486: opposing effects on human sperm.  Proc Natl Acad Sci USA. 1994;  91 529-533
  • 73 Bonaccorsi L, Luconi M, Forti G, Baldi E. Tyrosine kinase inhibition reduces the plateau phase of the calcium increase in response to progesterone in human sperm.  FEBS Lett. 1995;  364 83-86
  • 74 Tesarik J, Carreras A, Mendoza C. Single cell analysis of tyrosine kinase dependent and independent Ca2 + fluxes in progesterone induced acrosome reaction.  Mol Hum Reprod. 1996;  2 225-232
  • 75 Blackmore P F, Eisoldt S. The neoglycoprotein mannose-bovine serum albumin, but not progesterone, activates T-type calcium channels in human spermatozoa.  Mol Hum Reprod. 1999;  5 498-506
  • 76 Harper C V, Barratt C L, Publicover S J. Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [Ca(2 +)](i) oscillations and cyclical transitions in flagellar beating.  J Biol Chem. 2004;  279 46315-46325
  • 77 Thomas P, Meizel S. Phosphatidylinositol 4,5-bisphosphate hydrolysis in human sperm stimulated with follicular fluid or progesterone is dependent upon Ca2 + influx.  Biochem J. 1989;  264 539-546
  • 78 Fukami K, Yoshida M, Inoue T et al.. Phospholipase Cdelta4 is required for Ca2 + mobilization essential for acrosome reaction in sperm.  J Cell Biol. 2003;  161 79-88
  • 79 Kuroda Y, Kaneko S, Yoshimura Y, Nozawa S, Mikoshiba K. Influence of progesterone and GABAA receptor on calcium mobilization during human sperm acrosome reaction.  Arch Androl. 1999;  42 185-191
  • 80 Clapham D E, Julius D, Montell C, Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels.  Pharmacol Rev. 2005;  57 427-450
  • 81 De Blas G, Michaut M, Trevino C L et al.. The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis.  J Biol Chem. 2002;  277 49326-49331
  • 82 Herrick S B, Schweissinger D L, Kim S W, Bayan K R, Mann S, Cardullo R A. The acrosomal vesicle of mouse sperm is a calcium store.  J Cell Physiol. 2005;  202 663-671
  • 83 Roldan E R, Murase T, Shi Q X. Exocytosis in spermatozoa in response to progesterone and zona pellucida.  Science. 1994;  266 1578-1581
  • 84 Walensky L D, Snyder S H. Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm.  J Cell Biol. 1995;  130 857-869
  • 85 O'Toole C M, Arnoult C, Darszon A, Steinhardt R A, Florman H M. Ca(2 +) entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction.  Mol Biol Cell. 2000;  11 1571-1584
  • 86 Evans J P, Florman H M. The state of the union: the cell biology of fertilization.  Nat Cell Biol. 2002;  4(suppl) s57-s63
  • 87 Pietrobon E O, Soria M, Dominguez L A, Monclus M L, Fornes M W. Simultaneous activation of PLA2 and PLC are required to promote acrosomal reaction stimulated by progesterone via G-proteins.  Mol Reprod Dev. 2005;  70 58-63
  • 88 Roggero C M, Tomes C N, De Blas G A et al.. Protein kinase C-mediated phosphorylation of the two polybasic regions of synaptotagmin VI regulates their function in acrosomal exocytosis.  Dev Biol. 2005;  285 422-435
  • 89 Branham M T, Mayorga L S, Tomes C N. Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway.  J Biol Chem. 2006;  281 8656-8666
  • 90 Tomes C N, Michaut M, De Blas G, Visconti P, Matti U, Mayorga L S. SNARE complex assembly is required for human sperm acrosome reaction.  Dev Biol. 2002;  243 326-338
  • 91 Tomes C N, Roggero C M, De Blas G, Saling P M, Mayorga L S. Requirement of protein tyrosine kinase and phosphatase activities for human sperm exocytosis.  Dev Biol. 2004;  265 399-415
  • 92 Branham M T, Mayorga L S, Tomes C N. Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway.  J Biol Chem. 2006;  281 8656-8666
  • 93 Luconi M, Krausz C, Barni T, Vannelli G B, Forti G, Baldi E. Progesterone stimulates p42 extracellular signal-regulated kinase (p42erk) in human spermatozoa.  Mol Hum Reprod. 1998;  4 251-258
  • 94 Kumar S, Ying Y K, Hong P, Maddaiah V T. Potassium increases intracellular calcium simulating progesterone action in human sperm.  Arch Androl. 2000;  44 93-101
  • 95 Schaefer M, Habenicht U F, Brautigam M, Gudermann T. Steroidal sigma receptor ligands affect signaling pathways in human spermatozoa.  Biol Reprod. 2000;  63 57-63
  • 96 Harper C V, Kirkman-Brown J C, Barratt C L, Publicover S J. Encoding of progesterone stimulus intensity by intracellular [Ca2 +] ([Ca2 +]i) in human spermatozoa.  Biochem J. 2003;  372 407-417
  • 97 Luconi M, Krausz C, Barni T, Vannelli G B, Forti G, Baldi E. Progesterone stimulates p42 extracellular signal-regulated kinase (p42erk) in human spermatozoa.  Mol Hum Reprod. 1998;  4 251-258
  • 98 Kirkman-Brown J C, Barratt C L, Publicover S J. Slow calcium oscillations in human spermatozoa.  Biochem J. 2004;  378 827-832
  • 99 Ho H C, Suarez S S. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2 +) store is involved in regulating sperm hyperactivated motility.  Biol Reprod. 2001;  65 1606-1615
  • 100 Naaby-Hansen S, Wolkowicz M J, Klotz K et al.. Co-localization of the inositol 1,4,5-trisphosphate receptor and calreticulin in the equatorial segment and in membrane bounded vesicles in the cytoplasmic droplet of human spermatozoa.  Mol Hum Reprod. 2001;  7 923-933
  • 101 Westbrook V A, Diekman A B, Naaby-Hansen S et al.. Differential nuclear localization of the cancer/testis-associated protein, SPAN-X/CTp11, in transfected cells and in 50% of human spermatozoa.  Biol Reprod. 2001;  64 345-358
  • 102 Ho H C, Suarez S S. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility.  Biol Reprod. 2003;  68 1590-1596
  • 103 Teves M E, Barbano F, Guidobaldi H A, Sanchez R, Miska W, Giojalas L C. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa.  Fertil Steril. 2006;  86 745-749
  • 104 Gerdes D, Wehling M, Leube B, Falkenstein E. Cloning and tissue expression of two putative steroid membrane receptors.  Biol Chem. 1998;  379 907-911
  • 105 Meyer C, Schmid R, Scriba P C, Wehling M. Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes.  Eur J Biochem. 1996;  239 726-731
  • 106 Falkenstein E, Meyer C, Eisen C, Scriba P C, Wehling M. Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells.  Biochem Biophys Res Commun. 1996;  229 86-89
  • 107 Williams S P, Sigler P B. Atomic structure of progesterone complexed with its receptor.  Nature. 1998;  393 392-396
  • 108 Krebs C J, Jarvis E D, Chan J, Lydon J P, Ogawa S, Pfaff D W. A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors.  Proc Natl Acad Sci USA. 2000;  97 12816-12821
  • 109 Falkenstein E, Heck M, Gerdes D et al.. Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2 + -fluxes in sperm.  Endocrinology. 1999;  140 5999-6002
  • 110 Meyer C, Schmieding K, Falkenstein E, Wehling M. Are high-affinity progesterone binding site(s) from porcine liver microsomes members of the sigma receptor family?.  Eur J Pharmacol. 1998;  347 293-299
  • 111 Selmin O, Lucier G W, Clark G C et al.. Isolation and characterization of a novel gene induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver.  Carcinogenesis. 1996;  17 2609-2615
  • 112 Losel R, Dorn-Beineke A, Falkenstein E, Wehling M, Feuring M. Porcine spermatozoa contain more than one membrane progesterone receptor.  Int J Biochem Cell Biol. 2004;  36 1532-1541
  • 113 Losel R, Breiter S, Seyfert M, Wehling M, Falkenstein E. Classic and non-classic progesterone receptors are both expressed in human spermatozoa.  Horm Metab Res. 2005;  37 10-14
  • 114 Weigel N L, Beck C A, Estes P A et al.. Ligands induce conformational changes in the carboxyl-terminus of progesterone receptors which are detected by a site-directed antipeptide monoclonal antibody.  Mol Endocrinol. 1992;  6 1585-1597
  • 115 Luconi M, Francavilla F, Porazzi I, Macerola B, Forti G, Baldi E. Human spermatozoa as a model for studying membrane receptors mediating rapid nongenomic effects of progesterone and estrogens.  Steroids. 2004;  69 553-559
  • 116 Castilla J A, Gil T, Molina J et al.. Undetectable expression of genomic progesterone receptor in human spermatozoa.  Hum Reprod. 1995;  10 1757-1760
  • 117 Luconi M, Bonaccorsi L, Maggi M et al.. Identification and characterization of functional nongenomic progesterone receptors on human sperm membrane.  J Clin Endocrinol Metab. 1998;  83 877-885
  • 118 Sabeur K, Edwards D P, Meizel S. Human sperm plasma membrane progesterone receptor(s) and the acrosome reaction.  Biol Reprod. 1996;  54 993-1001
  • 119 Blackmore P F, Neulen J, Lattanzio F, Beebe S J. Cell surface-binding sites for progesterone mediate calcium uptake in human sperm.  J Biol Chem. 1991;  266 18655-18659
  • 120 Blackmore P F, Fisher J F, Spilman C H, Bleasdale J E. Unusual steroid specificity of the cell surface progesterone receptor on human sperm.  Mol Pharmacol. 1996;  49 727-739
  • 121 Watson C S, Gametchu B. Membrane-initiated steroid actions and the proteins that mediate them.  Proc Soc Exp Biol Med. 1999;  220 9-19
  • 122 Roldan E R, Murase T, Shi Q X. Exocytosis in spermatozoa in response to progesterone and zona pellucida.  Science. 1994;  266 1578-1581
  • 123 Foresta C, Rossato M, Di Virgilio F. Ion fluxes through the progesterone-activated channel of the sperm plasma membrane.  Biochem J. 1993;  294(pt 1) 279-283
  • 124 Turner K O, Garcia M A, Meizel S. Progesterone initiation of the human sperm acrosome reaction: the obligatory increase in intracellular calcium is independent of the chloride requirement.  Mol Cell Endocrinol. 1994;  101 221-225
  • 125 Turner K O, Meizel S. Progesterone-mediated efflux of cytosolic chloride during the human sperm acrosome reaction.  Biochem Biophys Res Commun. 1995;  213 774-780
  • 126 Wistrom C A, Meizel S. Evidence suggesting involvement of a unique human sperm steroid receptor/Cl- channel complex in the progesterone-initiated acrosome reaction.  Dev Biol. 1993;  159 679-690
  • 127 Shi Q X, Roldan E R. Evidence that a GABAA-like receptor is involved in progesterone-induced acrosomal exocytosis in mouse spermatozoa.  Biol Reprod. 1995;  52 373-381
  • 128 Meizel S, Turner K O, Nuccitelli R. Progesterone triggers a wave of increased free calcium during the human sperm acrosome reaction.  Dev Biol. 1997;  182 67-75
  • 129 Calogero A E, Burrello N, Ferrara E, Hall J, Fishel S, D'Agata R. Gamma-aminobutyric acid (GABA) A and B receptors mediate the stimulatory effects of GABA on the human sperm acrosome reaction: interaction with progesterone.  Fertil Steril. 1999;  71 930-936
  • 130 Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor.  Proc Natl Acad Sci USA. 2003;  100 2237-2242
  • 131 Krietsch T, Fernandes M S, Kero J et al.. Human homologs of the putative G protein-coupled membrane progestin receptors (mPR{alpha}, {beta}, {gamma}) localize to the endoplasmic reticulum and are not activated by progesterone.  Mol Endocrinol. 2006;  20 3146-3164
  • 132 Monnet F P, Maurice T. The sigma1 protein as a target for the non-genomic effects of neuro(active)steroids: molecular, physiological, and behavioral aspects.  J Pharmacol Sci. 2006;  100 93-118
  • 133 Peluso J J, Pappalardo A, Losel R, Wehling M. Expression and function of PAIRBP1 within gonadotropin-primed immature rat ovaries: PAIRBP1 regulation of granulosa and luteal cell viability.  Biol Reprod. 2005;  73 261-270
  • 134 Peluso J J, Pappalardo A. Progesterone mediates its anti-mitogenic and anti-apoptotic actions in rat granulosa cells through a progesterone-binding protein with gamma aminobutyric acidA receptor-like features.  Biol Reprod. 1998;  58 1131-1137
  • 135 Peluso J J, Pappalardo A, Fernandez G, Wu C A. Involvement of an unnamed protein, RDA288, in the mechanism through which progesterone mediates its antiapoptotic action in spontaneously immortalized granulosa cells.  Endocrinology. 2004;  145 3014-3022
  • 136 Revelli A, Massobrio M, Tesarik J. Nongenomic actions of steroid hormones in reproductive tissues.  Endocr Rev. 1998;  19 3-17
  • 137 Hernandez-Perez O, Ballesteros L M, Rosado A. Binding of 17-beta-estradiol to the outer surface and nucleus of human spermatozoa.  Arch Androl. 1979;  3 23-29
  • 138 Luconi M, Muratori M, Forti G, Baldi E. Identification and characterization of a novel functional estrogen receptor on human sperm membrane that interferes with progesterone effects.  J Clin Endocrinol Metab. 1999;  84 1670-1678
  • 139 Baldi E, Luconi M, Muratori M, Forti G. A novel functional estrogen receptor on human sperm membrane interferes with progesterone effects.  Mol Cell Endocrinol. 2000;  161 31-35
  • 140 Kirkman-Brown J C. Second messenger systems in the human spermatozoon [Ph.D. thesis]. Birmingham, United Kingdom; University of Birmingham, School of Biosciences, Faculty of Science 2000
  • 141 Espinosa F, Lopez-Gonzalez I, Munoz-Garay C et al.. Dual regulation of the T-type Ca(2 +) current by serum albumin and beta-estradiol in mammalian spermatogenic cells.  FEBS Lett. 2000;  475 251-256
  • 142 Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction.  Front Biosci. 2000;  5 E110-E123
  • 143 Beck K J, Herschel S, Hungershofer R, Schwinger E. The effect of steroid hormones on motility and selective migration of X- and Y-bearing human spermatozoa.  Fertil Steril. 1976;  27 407-412
  • 144 Cheng C Y, Boettcher B. The effect of steroids on the in vitro migration of washed human spermatozoa in modified Tyrode's solution or in fasting human blood serum.  Fertil Steril. 1979;  32 566-570
  • 145 Hicks J J, Martinez-Manautou J, Pedron N, Rosado A. Metabolic changes in human spermatozoa related to capacitation.  Fertil Steril. 1972;  23 172-179
  • 146 Hyne R V, Murdoch R N, Boettcher B. The metabolism and motility of human spermatozoa in the presence of steroid hormones and synthetic progestagens.  J Reprod Fertil. 1978;  53 315-322
  • 147 Chan S Y, Tang L C, Ma H K. Stimulation of the zona-free hamster ova penetration efficiency by human spermatozoa after 17 beta-estradiol treatment.  Fertil Steril. 1983;  39 80-84
  • 148 Adeoya-Osiguwa S A, Markoulaki S, Pocock V, Milligan S R, Fraser L R. 17beta-Estradiol and environmental estrogens significantly affect mammalian sperm function.  Hum Reprod. 2003;  18 100-107
  • 149 Couse J F, Korach K S. Estrogen receptor null mice: what have we learned and where will they lead us?.  Endocr Rev. 1999;  20 358-417
  • 150 Aquila S, Sisci D, Gentile M et al.. Estrogen receptor (ER)alpha and ER beta are both expressed in human ejaculated spermatozoa: evidence of their direct interaction with phosphatidylinositol-3-OH kinase/Akt pathway.  J Clin Endocrinol Metab. 2004;  89 1443-1451
  • 151 Westergaard L, Christensen I J, McNatty K P. Steroid levels in ovarian follicular fluid related to follicle size and health status during the normal menstrual cycle in women.  Hum Reprod. 1986;  1 227-232
  • 152 Frederick J L, Francis M M, Macaso T M, Lobo R A, Sauer M V, Paulson R J. Preovulatory follicular fluid steroid levels in stimulated and unstimulated cycles triggered with human chorionic gonadotropin.  Fertil Steril. 1991;  55 44-47
  • 153 Osman R A, Andria M L, Jones A D, Meizel S. Steroid induced exocytosis: the human sperm acrosome reaction.  Biochem Biophys Res Commun. 1989;  160 828-833
  • 154 Schuffner A A, Bastiaan H S, Duran H E et al.. Zona pellucida-induced acrosome reaction in human sperm: dependency on activation of pertussis toxin-sensitive G(i) protein and extracellular calcium, and priming effect of progesterone and follicular fluid.  Mol Hum Reprod. 2002;  8 722-727
  • 155 Morales P, Pizarro E, Kong M, Pasten C. Sperm binding to the human zona pellucida and calcium influx in response to GnRH and progesterone.  Andrologia. 2002;  34 301-307
  • 156 Kim K S, Gerton G L. Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm.  Dev Biol. 2003;  264 141-152
  • 157 Arienti G, Carlini E, Saccardi C, Palmerini C A. Nitric oxide and fusion with prostasomes increase cytosolic calcium in progesterone-stimulated sperm.  Arch Biochem Biophys. 2002;  402 255-258
  • 158 Hand R A, Craven R J. Hpr6.6 protein mediates cell death from oxidative damage in MCF-7 human breast cancer cells.  J Cell Biochem. 2003;  90 534-547
  • 159 Munuce M J, Nascimento J A, Rosano G, Faundes A, Bahamondes L. Doses of levonorgestrel comparable to that delivered by the levonorgestrel-releasing intrauterine system can modify the in vitro expression of zona binding sites of human spermatozoa.  Contraception. 2006;  73 97-101

Jackson C Kirkman-BrownPh.D. 

ChRS, Assisted Conception Unit, Birmingham Women's Hospital NHS Trust, Edgbaston

Birmingham, B15 2TG, United Kingdom

Email: J.KirkmanBrown@bham.ac.uk