ABSTRACT
As sperm traverse the female tract from vagina to oocyte, they experience a steroid milieu, which due to transcriptional inactivity, they can only respond to via non-genomic signaling. This environment mediates events including capacitation, changes in motility patterns, chemotaxis, and acrosome reaction. Current knowledge of the events, calcium signaling pathways, and potential identity of receptors involved is reviewed in light of recent data, with a context for further work in the field, and emphasizing the importance of steroids as a mixed stimulant. Progesterone receptor candidates are considered in light of recent findings, including novel classes of receptors such as a progesterone membrane receptor component-1 or -2 complex with serpine-1 mRNA binding protein, the best candidate so far for progesterone activity in human sperm. Given the number of other alternative candidates and the apparent diversity of the signaling pathways activated, the presence of multiple species of progesterone receptors should not be excluded. Given that sperm dysfunction is the most common defined cause of infertility, advances in our currently limited knowledge of these pathways and events are crucial to not only create better therapies but also improve rational diagnosis.
KEYWORDS
Sperm - human - calcium - progesterone - estrogen - receptor - motility - oscillation - PGRMC - SERBP1
REFERENCES
1
Hull M G, Glazener C M, Kelly N J et al..
Population study of causes, treatment, and outcome of infertility.
Br Med J (Clin Res Ed).
1985;
291
1693-1697
2
Andersen A N, Gianaroli L, Felberbaum R, de Mouzon J, Nygren K G.
Assisted reproductive technology in Europe, 2001. Results generated from European registers by ESHRE.
Hum Reprod.
2005;
20
1158-1176
3
Gur Y, Breitbart H.
Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes.
Genes Dev.
2006;
20
411-416
4
Turner T T.
On the epididymis and its role in the development of the fertile ejaculate.
J Androl.
1995;
16
292-298
5
Turner T T, Johnston D S, Jelinsky S A.
Epididymal genomics and the search for a male contraceptive.
Mol Cell Endocrinol.
2006;
250
178-183
6
Eddy E M, Washburn T F, Bunch D O et al..
Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility.
Endocrinology.
1996;
137
4796-4805
7
Hess R A, Zhou Q, Nie R et al..
Estrogens and epididymal function.
Reprod Fertil Dev.
2001;
13
273-283
8
Gibbs G M, Scanlon M J, Swarbrick J et al..
The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2 + signaling.
J Biol Chem.
2006;
281
4156-4163
9
Nolan M A, Wu L, Bang H J et al..
Identification of rat cysteine-rich secretory protein 4 (Crisp4) as the ortholog to human CRISP1 and mouse Crisp4.
Biol Reprod.
2006;
74
984-991
10
Ellerman D A, Cohen D J, Da Ros V G, Morgenfeld M M, Busso D, Cuasnicu P S.
Sperm protein “DE” mediates gamete fusion through an evolutionarily conserved site of the CRISP family.
Dev Biol.
2006;
297
228-237
11
Palmerini C A, Saccardi C, Carlini E, Fabiani R, Arienti G.
Fusion of prostasomes to human spermatozoa stimulates the acrosome reaction.
Fertil Steril.
2003;
80
1181-1184
12
Arienti G, Carlini E, Saccardi C, Palmerini C A.
Nitric oxide and fusion with prostasomes increase cytosolic calcium in progesterone-stimulated sperm.
Arch Biochem Biophys.
2002;
402
255-258
13
Bjorndahl L, Kvist U.
Sequence of ejaculation affects the spermatozoon as a carrier and its message.
Reprod Biomed Online.
2003;
7
440-448
14
Austin C R.
The capacitation of the mammalian sperm.
Nature.
1952;
170
326
15
Chang M C.
An experimental analysis of female sterility in the rabbit.
Fertil Steril.
1952;
3
251-262
16
Chang M C.
The meaning of sperm capacitation. A historical perspective.
J Androl.
1984;
5
45-50
17
Ficarro S, Chertihin O, Westbrook V A et al..
Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation.
J Biol Chem.
2003;
278
11579-11589
18
Bjorndahl L, Kirkman-Brown J, Hart G, Rattle S, Barratt C L.
Development of a novel home sperm test.
Hum Reprod.
2006;
21
145-149
19
De Jonge C.
Biological basis for human capacitation.
Hum Reprod Update.
2005;
11
205-214
20
Ford W C.
Regulation of sperm function by reactive oxygen species.
Hum Reprod Update.
2004;
10
387-399
21
Fraser L R, Adeoya-Osiguwa S A, Baxendale R W, Gibbons R.
Regulation of mammalian sperm capacitation by endogenous molecules.
Front Biosci.
2006;
11
1636-1645
22
Yeung W S, Lee K F, Koistinen R et al..
Roles of glycodelin in modulating sperm function.
Mol Cell Endocrinol.
2006;
250
149-156
23
Eisenbach M, Giojalas L C.
Sperm guidance in mammals-an unpaved road to the egg.
Nat Rev Mol Cell Biol.
2006;
7
276-285
24
Fauci L J, McDonald A.
Sperm motility in the presence of boundaries.
Bull Math Biol.
1995;
57
679-699
25
Hunter R H.
The Fallopian tubes in domestic mammals: how vital is their physiological activity?.
Reprod Nutr Dev.
2005;
45
281-290
26
Wilcox A J, Weinberg C R, Baird D D.
Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby.
N Engl J Med.
1995;
333
1517-1521
27
Williams M, Hill C J, Scudamore I, Dunphy B, Cooke I D, Barratt C L.
Sperm numbers and distribution within the human fallopian tube around ovulation.
Hum Reprod.
1993;
8
2019-2026
28
DeMott R P, Lefebvre R, Suarez S S.
Carbohydrates mediate the adherence of hamster sperm to oviductal epithelium.
Biol Reprod.
1995;
52
1395-1403
29
Pacey A A, Hill C J, Scudamore I W, Warren M A, Barratt C L, Cooke I D.
The interaction in vitro of human spermatozoa with epithelial cells from the human uterine (fallopian) tube.
Hum Reprod.
1995;
10
360-366
30
Morales P, Palma V, Salgado A M, Villalon M.
Sperm interaction with human oviductal cells in vitro.
Hum Reprod.
1996;
11
1504-1509
31
Baillie H S, Pacey A A, Warren M A, Scudamore I W, Barratt C L.
Greater numbers of human spermatozoa associate with endosalpingeal cells derived from the isthmus compared with those from the ampulla.
Hum Reprod.
1997;
12
1985-1992
32
Tardif S, Lefievre L, Gagnon C, Bailey J L.
Implication of cAMP during porcine sperm capacitation and protein tyrosine phosphorylation.
Mol Reprod Dev.
2004;
69
428-435
33
Conner S J, Lefievre L, Hughes D C, Barratt C L.
Cracking the egg: increased complexity in the zona pellucida.
Hum Reprod.
2005;
20
1148-1152
34
Benoff S, Barcia M, Hurley I R et al..
Classification of male factor infertility relevant to in-vitro fertilization insemination strategies using mannose ligands, acrosome status and anti-cytoskeletal antibodies.
Hum Reprod.
1996;
11
1905-1918
35
Yanagimachi R.
Fertility of mammalian spermatozoa: its development and relativity.
Zygote.
1994;
2
371-372
36
Primakoff P, Myles D G.
Penetration, adhesion, and fusion in mammalian sperm-egg interaction.
Science.
2002;
296
2183-2185
37
Munuce M J, Quintero I, Caille A M, Ghersevich S, Berta C L.
Comparative concentrations of steroid hormones and proteins in human peri-ovulatory peritoneal and follicular fluids.
Reprod Biomed Online.
2006;
13
202-207
38
Westergaard L, Christensen I J, McNatty K P.
Steroid levels in ovarian follicular fluid related to follicle size and health status during the normal menstrual cycle in women.
Hum Reprod.
1986;
1
227-232
39
Osman R A, Andria M L, Jones A D, Meizel S.
Steroid induced exocytosis: the human sperm acrosome reaction.
Biochem Biophys Res Commun.
1989;
160
828-833
40
Lambard S, Carreau S.
Aromatase and oestrogens in human male germ cells.
Int J Androl.
2005;
28
254-259
41
Aquila S, Sisci D, Gentile M, Middea E, Siciliano L, Ando S.
Human ejaculated spermatozoa contain active P450 aromatase.
J Clin Endocrinol Metab.
2002;
87
3385-3390
42
Oehninger S, Sueldo C, Lanzendorf S et al..
A sequential analysis of the effect of progesterone on specific sperm functions crucial to fertilization in vitro in infertile patients.
Hum Reprod.
1994;
9
1322-1327
43
Krausz C, Bonaccorsi L, Luconi M et al..
Intracellular calcium increase and acrosome reaction in response to progesterone in human spermatozoa are correlated with in-vitro fertilization.
Hum Reprod.
1995;
10
120-124
44
Plant A, McLaughlin E A, Ford W C.
Intracellular calcium measurements in individual human sperm demonstrate that the majority can respond to progesterone.
Fertil Steril.
1995;
64
1213-1215
45
Tanghe S, Van Soom A, Sterckx V, Maes D, de Kruif A.
Assessment of different sperm quality parameters to predict in vitro fertility of bulls.
Reprod Domest Anim.
2002;
37
127-132
46
Krausz C, Bonaccorsi L, Maggio P et al..
Two functional assays of sperm responsiveness to progesterone and their predictive values in in-vitro fertilization.
Hum Reprod.
1996;
11
1661-1667
47
Forti G, Baldi E, Krausz C et al..
Effects of progesterone on human spermatozoa: clinical implications.
Ann Endocrinol (Paris).
1999;
60
107-110
48
Giojalas L C, Iribarren P, Molina R, Rovasio R A, Estofan D.
Determination of human sperm calcium uptake mediated by progesterone may be useful for evaluating unexplained sterility.
Fertil Steril.
2004;
82
738-740
49
Evans J P, Florman H M.
The state of the union: the cell biology of fertilization.
Nat Cell Biol.
2002;
4(suppl)
s57-s63
50
Blackmore P F, Beebe S J, Danforth D R, Alexander N.
Progesterone and 17 alpha-hydroxyprogesterone. Novel stimulators of calcium influx in human sperm.
J Biol Chem.
1990;
265
1376-1380
51
Baldi E, Casano R, Falsetti C, Krausz C, Maggi M, Forti G.
Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa.
J Androl.
1991;
12
323-330
52
Yang J, Serres C, Philibert D, Robel P, Baulieu E E, Jouannet P.
Progesterone and RU486: opposing effects on human sperm.
Proc Natl Acad Sci USA.
1994;
91
529-533
53
Bonaccorsi L, Luconi M, Forti G, Baldi E.
Tyrosine kinase inhibition reduces the plateau phase of the calcium increase in response to progesterone in human sperm.
FEBS Lett.
1995;
364
83-86
54
Aitken R J, Buckingham D W, Irvine D S.
The extragenomic action of progesterone on human spermatozoa: evidence for a ubiquitous response that is rapidly down-regulated.
Endocrinology.
1996;
137
3999-4009
55
Tesarik J, Carreras A, Mendoza C.
Single cell analysis of tyrosine kinase dependent and independent Ca2 + fluxes in progesterone induced acrosome reaction.
Mol Hum Reprod.
1996;
2
225-232
56
Kirkman-Brown J C, Bray C, Stewart P M, Barratt C L, Publicover S J.
Biphasic elevation of [Ca(2 +)](i) in individual human spermatozoa exposed to progesterone.
Dev Biol.
2000;
222
326-335
57
Clapham D E.
Calcium signaling.
Cell.
1995;
80
259-268
58
Ho H C, Granish K A, Suarez S S.
Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2 + and not cAMP.
Dev Biol.
2002;
250
208-217
59
Spehr M, Gisselmann G, Poplawski A et al..
Identification of a testicular odorant receptor mediating human sperm chemotaxis.
Science.
2003;
299
2054-2058
60
Spehr M, Schwane K, Riffell J A et al..
Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis.
J Biol Chem.
2004;
279
40194-40203
61
Florman H M, Tombes R M, First N L, Babcock D F.
An adhesion-associated agonist from the zona pellucida activates G protein-promoted elevations of internal Ca2 + and pH that mediate mammalian sperm acrosomal exocytosis.
Dev Biol.
1989;
135
133-146
62
Florman H M, Corron M E, Kim T D, Babcock D F.
Activation of voltage-dependent calcium channels of mammalian sperm is required for zona pellucida-induced acrosomal exocytosis.
Dev Biol.
1992;
152
304-314
63
Somanath P R, Suraj K, Gandhi K K.
Caprine sperm acrosome reaction: promotion by progesterone and homologous zona pellucida.
Small Rumin Res.
2000;
37
279-286
64
Tosti E, Di Cosmo A, Cuomo A, Di Cristo C, Gragnaniello G.
Progesterone induces activation in Octopus vulgaris spermatozoa.
Mol Reprod Dev.
2001;
59
97-105
65
Harper C V, Kirkman-Brown J C, Barratt C L, Publicover S J.
Encoding of progesterone stimulus intensity by intracellular [Ca2 +] ([Ca2 +]i) in human spermatozoa.
Biochem J.
2003;
372
407-417
66
Blackmore P F, Eisoldt S.
The neoglycoprotein mannose-bovine serum albumin, but not progesterone, activates T-type calcium channels in human spermatozoa.
Mol Hum Reprod.
1999;
5
498-506
67
Garcia M A, Meizel S.
Progesterone-mediated calcium influx and acrosome reaction of human spermatozoa: pharmacological investigation of T-type calcium channels.
Biol Reprod.
1999;
60
102-109
68
Kirkman-Brown J C, Barratt C L, Publicover S J.
Nifedipine reveals the existence of two discrete components of the progesterone-induced [Ca2 +]i transient in human spermatozoa.
Dev Biol.
2003;
259
71-82
69
Fraire-Zamora J J, Gonzalez-Martinez M T.
Effect of intracellular pH on depolarization-evoked calcium influx in human sperm.
Am J Physiol Cell Physiol.
2004;
287
C1688-C1696
70
Bedu-Addo K, Barratt C L, Kirkman-Brown J C, Publicover S J.
Patterns of [Ca(2 +)](i) mobilization and cell response in human spermatozoa exposed to progesterone.
Dev Biol.
2007;
302
324-332
71
Baldi E, Casano R, Falsetti C, Krausz C, Maggi M, Forti G.
Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa.
J Androl.
1991;
12
323-330
72
Yang J, Serres C, Philibert D, Robel P, Baulieu E E, Jouannet P.
Progesterone and RU486: opposing effects on human sperm.
Proc Natl Acad Sci USA.
1994;
91
529-533
73
Bonaccorsi L, Luconi M, Forti G, Baldi E.
Tyrosine kinase inhibition reduces the plateau phase of the calcium increase in response to progesterone in human sperm.
FEBS Lett.
1995;
364
83-86
74
Tesarik J, Carreras A, Mendoza C.
Single cell analysis of tyrosine kinase dependent and independent Ca2 + fluxes in progesterone induced acrosome reaction.
Mol Hum Reprod.
1996;
2
225-232
75
Blackmore P F, Eisoldt S.
The neoglycoprotein mannose-bovine serum albumin, but not progesterone, activates T-type calcium channels in human spermatozoa.
Mol Hum Reprod.
1999;
5
498-506
76
Harper C V, Barratt C L, Publicover S J.
Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [Ca(2 +)](i) oscillations and cyclical transitions in flagellar beating.
J Biol Chem.
2004;
279
46315-46325
77
Thomas P, Meizel S.
Phosphatidylinositol 4,5-bisphosphate hydrolysis in human sperm stimulated with follicular fluid or progesterone is dependent upon Ca2 + influx.
Biochem J.
1989;
264
539-546
78
Fukami K, Yoshida M, Inoue T et al..
Phospholipase Cdelta4 is required for Ca2 + mobilization essential for acrosome reaction in sperm.
J Cell Biol.
2003;
161
79-88
79
Kuroda Y, Kaneko S, Yoshimura Y, Nozawa S, Mikoshiba K.
Influence of progesterone and GABAA receptor on calcium mobilization during human sperm acrosome reaction.
Arch Androl.
1999;
42
185-191
80
Clapham D E, Julius D, Montell C, Schultz G.
International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels.
Pharmacol Rev.
2005;
57
427-450
81
De Blas G, Michaut M, Trevino C L et al..
The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis.
J Biol Chem.
2002;
277
49326-49331
82
Herrick S B, Schweissinger D L, Kim S W, Bayan K R, Mann S, Cardullo R A.
The acrosomal vesicle of mouse sperm is a calcium store.
J Cell Physiol.
2005;
202
663-671
83
Roldan E R, Murase T, Shi Q X.
Exocytosis in spermatozoa in response to progesterone and zona pellucida.
Science.
1994;
266
1578-1581
84
Walensky L D, Snyder S H.
Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm.
J Cell Biol.
1995;
130
857-869
85
O'Toole C M, Arnoult C, Darszon A, Steinhardt R A, Florman H M.
Ca(2 +) entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction.
Mol Biol Cell.
2000;
11
1571-1584
86
Evans J P, Florman H M.
The state of the union: the cell biology of fertilization.
Nat Cell Biol.
2002;
4(suppl)
s57-s63
87
Pietrobon E O, Soria M, Dominguez L A, Monclus M L, Fornes M W.
Simultaneous activation of PLA2 and PLC are required to promote acrosomal reaction stimulated by progesterone via G-proteins.
Mol Reprod Dev.
2005;
70
58-63
88
Roggero C M, Tomes C N, De Blas G A et al..
Protein kinase C-mediated phosphorylation of the two polybasic regions of synaptotagmin VI regulates their function in acrosomal exocytosis.
Dev Biol.
2005;
285
422-435
89
Branham M T, Mayorga L S, Tomes C N.
Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway.
J Biol Chem.
2006;
281
8656-8666
90
Tomes C N, Michaut M, De Blas G, Visconti P, Matti U, Mayorga L S.
SNARE complex assembly is required for human sperm acrosome reaction.
Dev Biol.
2002;
243
326-338
91
Tomes C N, Roggero C M, De Blas G, Saling P M, Mayorga L S.
Requirement of protein tyrosine kinase and phosphatase activities for human sperm exocytosis.
Dev Biol.
2004;
265
399-415
92
Branham M T, Mayorga L S, Tomes C N.
Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway.
J Biol Chem.
2006;
281
8656-8666
93
Luconi M, Krausz C, Barni T, Vannelli G B, Forti G, Baldi E.
Progesterone stimulates p42 extracellular signal-regulated kinase (p42erk) in human spermatozoa.
Mol Hum Reprod.
1998;
4
251-258
94
Kumar S, Ying Y K, Hong P, Maddaiah V T.
Potassium increases intracellular calcium simulating progesterone action in human sperm.
Arch Androl.
2000;
44
93-101
95
Schaefer M, Habenicht U F, Brautigam M, Gudermann T.
Steroidal sigma receptor ligands affect signaling pathways in human spermatozoa.
Biol Reprod.
2000;
63
57-63
96
Harper C V, Kirkman-Brown J C, Barratt C L, Publicover S J.
Encoding of progesterone stimulus intensity by intracellular [Ca2 +] ([Ca2 +]i) in human spermatozoa.
Biochem J.
2003;
372
407-417
97
Luconi M, Krausz C, Barni T, Vannelli G B, Forti G, Baldi E.
Progesterone stimulates p42 extracellular signal-regulated kinase (p42erk) in human spermatozoa.
Mol Hum Reprod.
1998;
4
251-258
98
Kirkman-Brown J C, Barratt C L, Publicover S J.
Slow calcium oscillations in human spermatozoa.
Biochem J.
2004;
378
827-832
99
Ho H C, Suarez S S.
An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2 +) store is involved in regulating sperm hyperactivated motility.
Biol Reprod.
2001;
65
1606-1615
100
Naaby-Hansen S, Wolkowicz M J, Klotz K et al..
Co-localization of the inositol 1,4,5-trisphosphate receptor and calreticulin in the equatorial segment and in membrane bounded vesicles in the cytoplasmic droplet of human spermatozoa.
Mol Hum Reprod.
2001;
7
923-933
101
Westbrook V A, Diekman A B, Naaby-Hansen S et al..
Differential nuclear localization of the cancer/testis-associated protein, SPAN-X/CTp11, in transfected cells and in 50% of human spermatozoa.
Biol Reprod.
2001;
64
345-358
102
Ho H C, Suarez S S.
Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility.
Biol Reprod.
2003;
68
1590-1596
103
Teves M E, Barbano F, Guidobaldi H A, Sanchez R, Miska W, Giojalas L C.
Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa.
Fertil Steril.
2006;
86
745-749
104
Gerdes D, Wehling M, Leube B, Falkenstein E.
Cloning and tissue expression of two putative steroid membrane receptors.
Biol Chem.
1998;
379
907-911
105
Meyer C, Schmid R, Scriba P C, Wehling M.
Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes.
Eur J Biochem.
1996;
239
726-731
106
Falkenstein E, Meyer C, Eisen C, Scriba P C, Wehling M.
Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells.
Biochem Biophys Res Commun.
1996;
229
86-89
107
Williams S P, Sigler P B.
Atomic structure of progesterone complexed with its receptor.
Nature.
1998;
393
392-396
108
Krebs C J, Jarvis E D, Chan J, Lydon J P, Ogawa S, Pfaff D W.
A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors.
Proc Natl Acad Sci USA.
2000;
97
12816-12821
109
Falkenstein E, Heck M, Gerdes D et al..
Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2 + -fluxes in sperm.
Endocrinology.
1999;
140
5999-6002
110
Meyer C, Schmieding K, Falkenstein E, Wehling M.
Are high-affinity progesterone binding site(s) from porcine liver microsomes members of the sigma receptor family?.
Eur J Pharmacol.
1998;
347
293-299
111
Selmin O, Lucier G W, Clark G C et al..
Isolation and characterization of a novel gene induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver.
Carcinogenesis.
1996;
17
2609-2615
112
Losel R, Dorn-Beineke A, Falkenstein E, Wehling M, Feuring M.
Porcine spermatozoa contain more than one membrane progesterone receptor.
Int J Biochem Cell Biol.
2004;
36
1532-1541
113
Losel R, Breiter S, Seyfert M, Wehling M, Falkenstein E.
Classic and non-classic progesterone receptors are both expressed in human spermatozoa.
Horm Metab Res.
2005;
37
10-14
114
Weigel N L, Beck C A, Estes P A et al..
Ligands induce conformational changes in the carboxyl-terminus of progesterone receptors which are detected by a site-directed antipeptide monoclonal antibody.
Mol Endocrinol.
1992;
6
1585-1597
115
Luconi M, Francavilla F, Porazzi I, Macerola B, Forti G, Baldi E.
Human spermatozoa as a model for studying membrane receptors mediating rapid nongenomic effects of progesterone and estrogens.
Steroids.
2004;
69
553-559
116
Castilla J A, Gil T, Molina J et al..
Undetectable expression of genomic progesterone receptor in human spermatozoa.
Hum Reprod.
1995;
10
1757-1760
117
Luconi M, Bonaccorsi L, Maggi M et al..
Identification and characterization of functional nongenomic progesterone receptors on human sperm membrane.
J Clin Endocrinol Metab.
1998;
83
877-885
118
Sabeur K, Edwards D P, Meizel S.
Human sperm plasma membrane progesterone receptor(s) and the acrosome reaction.
Biol Reprod.
1996;
54
993-1001
119
Blackmore P F, Neulen J, Lattanzio F, Beebe S J.
Cell surface-binding sites for progesterone mediate calcium uptake in human sperm.
J Biol Chem.
1991;
266
18655-18659
120
Blackmore P F, Fisher J F, Spilman C H, Bleasdale J E.
Unusual steroid specificity of the cell surface progesterone receptor on human sperm.
Mol Pharmacol.
1996;
49
727-739
121
Watson C S, Gametchu B.
Membrane-initiated steroid actions and the proteins that mediate them.
Proc Soc Exp Biol Med.
1999;
220
9-19
122
Roldan E R, Murase T, Shi Q X.
Exocytosis in spermatozoa in response to progesterone and zona pellucida.
Science.
1994;
266
1578-1581
123
Foresta C, Rossato M, Di Virgilio F.
Ion fluxes through the progesterone-activated channel of the sperm plasma membrane.
Biochem J.
1993;
294(pt 1)
279-283
124
Turner K O, Garcia M A, Meizel S.
Progesterone initiation of the human sperm acrosome reaction: the obligatory increase in intracellular calcium is independent of the chloride requirement.
Mol Cell Endocrinol.
1994;
101
221-225
125
Turner K O, Meizel S.
Progesterone-mediated efflux of cytosolic chloride during the human sperm acrosome reaction.
Biochem Biophys Res Commun.
1995;
213
774-780
126
Wistrom C A, Meizel S.
Evidence suggesting involvement of a unique human sperm steroid receptor/Cl- channel complex in the progesterone-initiated acrosome reaction.
Dev Biol.
1993;
159
679-690
127
Shi Q X, Roldan E R.
Evidence that a GABAA-like receptor is involved in progesterone-induced acrosomal exocytosis in mouse spermatozoa.
Biol Reprod.
1995;
52
373-381
128
Meizel S, Turner K O, Nuccitelli R.
Progesterone triggers a wave of increased free calcium during the human sperm acrosome reaction.
Dev Biol.
1997;
182
67-75
129
Calogero A E, Burrello N, Ferrara E, Hall J, Fishel S, D'Agata R.
Gamma-aminobutyric acid (GABA) A and B receptors mediate the stimulatory effects of GABA on the human sperm acrosome reaction: interaction with progesterone.
Fertil Steril.
1999;
71
930-936
130
Zhu Y, Bond J, Thomas P.
Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor.
Proc Natl Acad Sci USA.
2003;
100
2237-2242
131
Krietsch T, Fernandes M S, Kero J et al..
Human homologs of the putative G protein-coupled membrane progestin receptors (mPR{alpha}, {beta}, {gamma}) localize to the endoplasmic reticulum and are not activated by progesterone.
Mol Endocrinol.
2006;
20
3146-3164
132
Monnet F P, Maurice T.
The sigma1 protein as a target for the non-genomic effects of neuro(active)steroids: molecular, physiological, and behavioral aspects.
J Pharmacol Sci.
2006;
100
93-118
133
Peluso J J, Pappalardo A, Losel R, Wehling M.
Expression and function of PAIRBP1 within gonadotropin-primed immature rat ovaries: PAIRBP1 regulation of granulosa and luteal cell viability.
Biol Reprod.
2005;
73
261-270
134
Peluso J J, Pappalardo A.
Progesterone mediates its anti-mitogenic and anti-apoptotic actions in rat granulosa cells through a progesterone-binding protein with gamma aminobutyric acidA receptor-like features.
Biol Reprod.
1998;
58
1131-1137
135
Peluso J J, Pappalardo A, Fernandez G, Wu C A.
Involvement of an unnamed protein, RDA288, in the mechanism through which progesterone mediates its antiapoptotic action in spontaneously immortalized granulosa cells.
Endocrinology.
2004;
145
3014-3022
136
Revelli A, Massobrio M, Tesarik J.
Nongenomic actions of steroid hormones in reproductive tissues.
Endocr Rev.
1998;
19
3-17
137
Hernandez-Perez O, Ballesteros L M, Rosado A.
Binding of 17-beta-estradiol to the outer surface and nucleus of human spermatozoa.
Arch Androl.
1979;
3
23-29
138
Luconi M, Muratori M, Forti G, Baldi E.
Identification and characterization of a novel functional estrogen receptor on human sperm membrane that interferes with progesterone effects.
J Clin Endocrinol Metab.
1999;
84
1670-1678
139
Baldi E, Luconi M, Muratori M, Forti G.
A novel functional estrogen receptor on human sperm membrane interferes with progesterone effects.
Mol Cell Endocrinol.
2000;
161
31-35
140 Kirkman-Brown J C. Second messenger systems in the human spermatozoon [Ph.D. thesis]. Birmingham, United Kingdom; University of Birmingham, School of Biosciences, Faculty of Science 2000
141
Espinosa F, Lopez-Gonzalez I, Munoz-Garay C et al..
Dual regulation of the T-type Ca(2 +) current by serum albumin and beta-estradiol in mammalian spermatogenic cells.
FEBS Lett.
2000;
475
251-256
142
Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G.
Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction.
Front Biosci.
2000;
5
E110-E123
143
Beck K J, Herschel S, Hungershofer R, Schwinger E.
The effect of steroid hormones on motility and selective migration of X- and Y-bearing human spermatozoa.
Fertil Steril.
1976;
27
407-412
144
Cheng C Y, Boettcher B.
The effect of steroids on the in vitro migration of washed human spermatozoa in modified Tyrode's solution or in fasting human blood serum.
Fertil Steril.
1979;
32
566-570
145
Hicks J J, Martinez-Manautou J, Pedron N, Rosado A.
Metabolic changes in human spermatozoa related to capacitation.
Fertil Steril.
1972;
23
172-179
146
Hyne R V, Murdoch R N, Boettcher B.
The metabolism and motility of human spermatozoa in the presence of steroid hormones and synthetic progestagens.
J Reprod Fertil.
1978;
53
315-322
147
Chan S Y, Tang L C, Ma H K.
Stimulation of the zona-free hamster ova penetration efficiency by human spermatozoa after 17 beta-estradiol treatment.
Fertil Steril.
1983;
39
80-84
148
Adeoya-Osiguwa S A, Markoulaki S, Pocock V, Milligan S R, Fraser L R.
17beta-Estradiol and environmental estrogens significantly affect mammalian sperm function.
Hum Reprod.
2003;
18
100-107
149
Couse J F, Korach K S.
Estrogen receptor null mice: what have we learned and where will they lead us?.
Endocr Rev.
1999;
20
358-417
150
Aquila S, Sisci D, Gentile M et al..
Estrogen receptor (ER)alpha and ER beta are both expressed in human ejaculated spermatozoa: evidence of their direct interaction with phosphatidylinositol-3-OH kinase/Akt pathway.
J Clin Endocrinol Metab.
2004;
89
1443-1451
151
Westergaard L, Christensen I J, McNatty K P.
Steroid levels in ovarian follicular fluid related to follicle size and health status during the normal menstrual cycle in women.
Hum Reprod.
1986;
1
227-232
152
Frederick J L, Francis M M, Macaso T M, Lobo R A, Sauer M V, Paulson R J.
Preovulatory follicular fluid steroid levels in stimulated and unstimulated cycles triggered with human chorionic gonadotropin.
Fertil Steril.
1991;
55
44-47
153
Osman R A, Andria M L, Jones A D, Meizel S.
Steroid induced exocytosis: the human sperm acrosome reaction.
Biochem Biophys Res Commun.
1989;
160
828-833
154
Schuffner A A, Bastiaan H S, Duran H E et al..
Zona pellucida-induced acrosome reaction in human sperm: dependency on activation of pertussis toxin-sensitive G(i) protein and extracellular calcium, and priming effect of progesterone and follicular fluid.
Mol Hum Reprod.
2002;
8
722-727
155
Morales P, Pizarro E, Kong M, Pasten C.
Sperm binding to the human zona pellucida and calcium influx in response to GnRH and progesterone.
Andrologia.
2002;
34
301-307
156
Kim K S, Gerton G L.
Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm.
Dev Biol.
2003;
264
141-152
157
Arienti G, Carlini E, Saccardi C, Palmerini C A.
Nitric oxide and fusion with prostasomes increase cytosolic calcium in progesterone-stimulated sperm.
Arch Biochem Biophys.
2002;
402
255-258
158
Hand R A, Craven R J.
Hpr6.6 protein mediates cell death from oxidative damage in MCF-7 human breast cancer cells.
J Cell Biochem.
2003;
90
534-547
159
Munuce M J, Nascimento J A, Rosano G, Faundes A, Bahamondes L.
Doses of levonorgestrel comparable to that delivered by the levonorgestrel-releasing intrauterine system can modify the in vitro expression of zona binding sites of human spermatozoa.
Contraception.
2006;
73
97-101
Jackson C Kirkman-BrownPh.D.
ChRS, Assisted Conception Unit, Birmingham Women's Hospital NHS Trust, Edgbaston
Birmingham, B15 2TG, United Kingdom
Email: J.KirkmanBrown@bham.ac.uk