Semin Hear 2007; 28(2): 142-150
DOI: 10.1055/s-2007-973440
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Computer-Assisted Speech Training for Cochlear Implant Patients: Feasibility, Outcomes, and Future Directions

Qian-Jie Fu1 , John J. Galvin1  III 
  • 1Department of Auditory Implants and Perception, House Ear Institute, Los Angeles, California
Further Information

Publication History

Publication Date:
23 April 2007 (online)

ABSTRACT

Learning electrically stimulated speech patterns can be a new and difficult experience for cochlear implant patients. Cochlear implantation alone may not fully meet the needs of many patients, and additional auditory rehabilitation may be necessary to maximize the benefits of the implanted device. A recently developed computer-assisted speech-training program provides cochlear implant patients with the means to conduct auditory rehabilitation at home. The training software targets important acoustic contrasts between speech stimuli and provides auditory and visual feedback as well as progressive training, thereby maintaining patients' interest in the auditory training exercises. Recent scientific studies have demonstrated the effectiveness of such specialized auditory training programs in improving cochlear implant patients' speech recognition performance. Provided with an inexpensive and accessible auditory training program, cochlear implant patients may find the motivation and momentum to get the most from the implanted device.

REFERENCES

  • 1 Eggermont J J, Ponton C W. Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: correlations with changes in structure and speech perception.  Acta Otolaryngol. 2003;  123 249-252
  • 2 Kelly A S, Purdy S C, Thorne P R. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users.  Clin Neurophysiol. 2005;  116 1235-1246
  • 3 Donaldson G S, Nelson D A. Place-pitch sensitivity and its relation to consonant recognition by cochlear implant listeners using the MPEAK and SPEAK speech processing strategies.  J Acoust Soc Am. 1999;  107 1645-1658
  • 4 Cazals Y, Pelizzone M, Saudan O, Boex C. Low-pass filtering in amplitude modulation detection associated with vowel and consonant identification in subjects with cochlear implants.  J Acoust Soc Am. 1994;  96 2048-2054
  • 5 Fu Q-J. Temporal processing and speech recognition in cochlear implant users.  Neuroreport. 2002;  13 1635-1640
  • 6 Busby P A, Clark G M. Gap detection by early-deafened cochlear-implant subjects.  J Acoust Soc Am. 1999;  105 1841-1852
  • 7 Cazals Y, Pelizzone M, Kasper A, Montandon P. Indication of a relation between speech perception and temporal resolution for cochlear implantees.  Ann Otol Rhinol Laryngol. 1991;  100 893-895
  • 8 Muchnik C, Taitelbaum R, Tene S, Hildesheimer M. Auditory temporal resolution and open speech recognition in cochlear implant recipients.  Scand Audiol. 1994;  23 105-109
  • 9 George C R, Cafarelli Dees D, Sheridan C, Haacke N. Preliminary findings of the new Spectra 22 speech processor with first-time cochlear implant users.  Ann Otol Rhinol Laryngol Suppl. 1995;  166 272-275
  • 10 Gray R F, Quinn S J, Court I, Vanat Z, Baguley D M. Patient performance over eighteen months with the Ineraid intracochlear implant.  Ann Otol Rhinol Laryngol Suppl. 1995;  166 275-277
  • 11 Loeb G E, Kessler D K. Speech recognition performance over time with the Clarion cochlear prosthesis.  Ann Otol Rhinol Laryngol Suppl. 1995;  166 290-292
  • 12 Spivak L G, Waltzman S B. Performance of cochlear implant patients as a function of time.  J Speech Hear Res. 1990;  33 511-519
  • 13 Waltzman S B, Cohen N L, Shapiro W H. Long-term effects of multichannel cochlear implant usage.  Laryngoscope. 1986;  96(10) 1083-1087
  • 14 Tyler R S, Gantz B J, Woodworth G G, Fryauf-Bertschy H, Kelsay D M. Performance of 2- and 3-year-old children and prediction of 4-year from 1-year performance.  Am J Otol. 1997;  18 S157-S159
  • 15 Dorman M F, Loizou P C. Changes in speech intelligibility as a function of time and signal processing strategy for an Inneraid patient fitted with continuous interleaved sampling (CIS) processors.  Ear Hear. 1997;  18 147-155
  • 16 Hillenbrand J, Getty L A, Clark M J, Wheeler K. Acoustic characteristics of American English vowels.  J Acoust Soc Am. 1995;  97 3099-3111
  • 17 Sweetow R, Palmer C V. Efficacy of individual auditory training in adults: a systematic review of the evidence.  J Am Acad Audiol. 2005;  16 494-504
  • 18 Bloom S. Technologic advances raise prospects for a resurgence in use of auditory training.  The Hearing Journal. 2004;  57(8) 19-24
  • 19 Hesse G, Nelting M, Mohrmann B, Laubert A, Ptok M. Intensive inpatient therapy of auditory processing and perceptual disorders in childhood.  HNO. 2001;  49 636-641
  • 20 Musiek F E, Baran J A, Schochat E. Selected management approaches to central auditory processing disorders.  Scand Audiol Suppl. 1999;  51 63-76
  • 21 Merzenich M M, Jenkins W M, Johnston P, Schreiner C, Miller S L, Tallal P. Temporal processing deficits of language-learning impaired children ameliorated by training.  Science. 1996;  271(5245) 77-81
  • 22 Tallal P, Miller S L, Bedi G et al.. Language comprehension in language-learning impaired children improved with acoustically modified speech.  Science. 1996;  271 81-84
  • 23 Busby P A, Roberts S A, Tong Y C, Clark G M. Results of speech perception and speech production training for three prelingually deaf patients using a multiple-electrode cochlear implant.  Br J Audiol. 1991;  25 291-302
  • 24 Dawson P W, Clark G M. Changes in synthetic and natural vowel perception after specific training for congenitally deafened patients using a multichannel cochlear implant.  Ear Hear. 1997;  18 488-501
  • 25 Fu Q J, Galvin 3rd J J, Wang X, Nogaki G. Moderate auditory training can improve speech performance of adult cochlear implant users.  J Acoust Soc Am. 2005;  113 1065-1072
  • 26 Galvin J J, Fu Q-J, Nogaki G. Melodic sequence identification in cochlear implants.  Ear Hear. 2007;  , In press
  • 27 Kong Y Y, Cruz R, Jones J A, Zeng F-G. Music perception with temporal cues in acoustic and electric hearing.  Ear Hear. 2004;  25 173-185
  • 28 Lin M-C. The acoustic characteristics and perceptual cues of tones in Standard Chinese.  Chinese Yuwen. 1988;  204 182-193
  • 29 Wang R-H. Chinese phonetics. In: Chen Y-B, Wang R-H Speech Signal Processing. Hefei, China; University of Science and Technology of China Press 1989: 37-64
  • 30 Fu Q-J, Zeng F-G, Shannon R V, Soli S D. Importance of tonal envelope cues in Chinese speech recognition.  J Acoust Soc Am. 1998;  104 505-510
  • 31 Fu Q-J, Hsu C-J, Horng M-J. Effects of speech processing strategy on Chinese tone recognition by nucleus-24 cochlear implant patients.  Ear Hear . 2004;  25 501-508
  • 32 Fu Q-J, Zeng F-G. Effects of envelope cues on Mandarin Chinese tone recognition.  Asia-Pacific J Speech Lang Hear. 2000;  5 45-57
  • 33 Whalen D H, Xu Y. Information for Mandarin tones in the amplitude contour and in brief segments.  Phonetica. 1992;  49 25-47
  • 34 Wu J-L, Yang H-M, Lin Y-H, Fu Q-J. Effects of computer-assisted speech training on Mandarin-speaking hearing impaired children.  Audiology and Neuro-Otology (ANO). 2007;  , In press
  • 35 Fu Q-J, Nogaki G, Galvin III J J. Auditory training with spectrally shifted speech: an implication for cochlear implant users' auditory rehabilitation.  J Assoc Res Otolaryngol. 2005;  6 180-189
  • 36 Nogaki G, Fu Q-J, Galvin J J. The effect of training rate on recognition of spectrally shifted speech.  Ear Hear. 2007;  , In press
  • 37 Shannon R V, Jensvold A, Padilla M, Robert M E, Wang X. Consonant recordings for speech testing.  J Acoust Soc Am. 1999;  106 L71-L74
  • 38 Tremblay K, Kraus N, Carrell T D, McGee T. Central auditory system plasticity: generalization to novel stimuli following listening training.  J Acoust Soc Am. 1997;  102 3762-3773
  • 39 Tremblay K, Kraus N, McGee T. The time course of auditory perceptual learning: neurophysiological changes during speech-sound training.  Neuroreport. 1998;  9 3557-3560
  • 40 Fu Q J, Shannon R V, Galvin J J. Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant.  J Acoust Soc Am. 2002;  112(4) 1664-1674
  • 41 Wilson B S, Finley C C, Lawson D T, Wolford R D, Eddington D K, Rabinowitz W M. Better speech recognition with cochlear implants.  Nature. 1991;  352 236-238
  • 42 Rosen S, Faulkner A, Wilkinson L. Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants.  J Acoust Soc Am. 1999;  106(6) 3629-3636

Qian-Jie FuPh.D. 

Department of Auditory Implants and Perception, House Ear Institute

2100 West Third St., Los Angeles, CA 90057

Email: qfu@hei.org