References and Notes
-
1a
Kobayashi J.
Tsuda M.
Nat. Prod. Rep.
2004,
21:
77
-
1b
Kobayashi J.
Ishibashi M. In Comprehensive Natural Products Chemistry
Vol. 8:
Mori K.
Elsevier;
Amsterdam:
1999.
p.415
- 2
Tsuda M.
Izui N.
Shimbo K.
Sato M.
Fukushi E.
Kawabata J.
Katsumata K.
Horiguchi T.
Kobayashi J.
J. Org. Chem.
2003,
68:
5339
- 3 For a review on the synthesis of macrodiolide natural products, see: Kang EJ.
Lee E.
Chem. Rev.
2005,
105:
4348
- 4
Tsuda M.
Izui N.
Shimbo K.
Sato M.
Fukushi E.
Kawabata J.
Kobayashi J.
J. Org. Chem.
2003,
68:
9109
-
5a
Lepage O.
Kattnig E.
Fürstner A.
J. Am. Chem. Soc.
2004,
126:
15970
-
5b
Fürstner A.
Kattnig E.
Lepage O.
J. Am. Chem. Soc.
2006,
128:
9194
-
6a
Narayan RS.
Sivakumar M.
Bouhlel E.
Borhan B.
Org. Lett.
2001,
3:
2489
-
6b
Narayan RS.
Borhan B.
J. Org. Chem.
2006,
71:
1416
-
Nicolaou and co-workers pioneered in the study of regioselective hydroxy epoxide openings controlled by a double bond. See:
-
7a
Nicolaou KC.
Prasad CVC.
Somers PK.
Hwang C.-K.
J. Am. Chem. Soc.
1989,
111:
5330
-
7b
Nicolaou KC.
Prasad CVC.
Somers PK.
Hwang C.-K.
J. Am. Chem. Soc.
1989,
111:
5335
- 8
Chen Y.
Jin J.
Wu J.
Dai W.-M.
Synlett
2006,
1177
- 9
Oshima M.
Yamazaki H.
Shimizu I.
Nisar M.
Tsuji J.
J. Am. Chem. Soc.
1989,
111:
6280
-
For recent examples of the use of this methodology in synthesis, see:
-
10a
Noguchi Y.
Yamada T.
Uchiro H.
Kobayashi S.
Tetrahedron Lett.
2000,
41:
7499
-
10b
Tholander J.
Carreira EM.
Helv. Chim. Acta
2001,
84:
613
-
11a
Mori K.
Tetrahedron
1977,
33:
289
-
11b
Tago K.
Arai M.
Kogen H.
J. Chem. Soc., Perkin Trans. 1
2000,
2073
- 14
Vatèle J.-M.
Tetrahedron Lett.
2006,
47:
715
- 18
Evans DA.
Bender SL.
Morris J.
J. Am. Chem. Soc.
1988,
110:
2506
-
For examples of the influence of alcohol functions on the diastereoselectivity of the Sharpless epoxidation, see:
-
20a
Takano S.
Setoh M.
Takahashi M.
Ogasawara K.
Tetrahedron Lett.
1992,
33:
5365
-
20b
Rizzi JP.
Kende AS.
Tetrahedron
1984,
22:
4693
-
20c
Naruta Y.
Nishigaichi Y.
Maruyama K.
Tetrahedron Lett.
1989,
30:
3319
- 21
De Mico A.
Margarita R.
Parlanti L.
Vescovi A.
Piancatelli G.
J. Org. Chem.
1997,
62:
6974
-
23a
Brown HC.
Cope OJ.
J. Am. Chem. Soc.
1964,
86:
1801
-
23b
Brown HC.
Chen JC.
J. Org. Chem.
1981,
46:
3978
12 Physical data for 7: liquid; [α]D
20 +8.5 (c = 2, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 0.89 (t, J = 7.0 Hz, 3 H), 1.25 (s, 3 H), 1.29-1.62 (m, 4 H), 2.84 (dd, J = 4.8, 6.8 Hz, 1 H), 2.94 (q, J = 4.2, 6.7 Hz, 1 H), 3.64 (ddd, J = 4.7, 7.1, 12.2 Hz, 1 H), 3.80 (ddd, J = 4.2, 7.4, 12.2 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 14.0, 16.7, 18.3, 40.6, 61.4 (2 × C), 63.2. Anal. Calcd for C7H14O2: C, 64.58; H, 10.84; O, 24.58. Found: C, 64.53; H, 10.77; O, 24.21.
13 Enantiomeric excess was determined by 1H NMR analysis (C6D6, 300 MHz) of the corresponding acetate of 7, in the presence of the chiral shift reagent Eu(hfc)3.
15 Physical data for 5: oil; [α]D
20 -12 (c = 1, CHCl3). 1 NMR (300 MHz, CDCl3): δ = 0.91 (t, J = 7.0 Hz, 3 H), 1.24 (s, 3 H), 1.27 (t, J = 7.1 Hz, 3 H), 1.35-1.66 (m, 4 H), 3.29 (dd, J = 0.9, 6.4 Hz, 1 H), 4.18 (q, J = 7.1 Hz, 2 H), 6.07 (dd, J = 0.9, 15.7 Hz, 1 H), 6.81 (dd, J = 6.5, 15.7 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 14.0, 14.2, 16.5, 18.4, 40.5, 60.6, 61.3, 64.2, 124.8, 143.0, 165.7. Anal. Calcd for C11H18O3: C, 66.64; H, 9.15; O, 24.24. Found: C, 66.60; H, 9.38; O, 24.01.
16 A small amount of its corresponding Z-isomer was also isolated (5%).
17 Physical data for 8: oil; [α]D
20 -3.0 (c = 2, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 0.89 (t, J = 6.8 Hz, 3 H), 1.16 (s, 3 H), 1.26 (t, J = 7.1 Hz, 3 H), 1.33-1.46 (m, 4 H), 1.91 (s, 1 H), 2.32 (dd, J = 1.0, 7.8 Hz, 2 H), 4.15 (q, J = 7.1 Hz, 2 H), 5.83 (dt, J = 1.2, 15.6 Hz, 1 H), 6.97 (quint, J = 7.8, 15.6 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 14.2, 14.5, 17.0, 27.0, 44.4, 44.8, 60.3, 72.5, 124.2, 144.9, 166.4. Anal. Calcd for C11H20O3: C, 65.97; H, 10.07; O, 23.97. Found: C, 65.72; H, 10.22; O, 24.05.
19 Low diastereoselectivity was observed when the epoxidation was conducted with MCPBA (20% de).
22 Analytical data for 3: oil; [α]D
20 -20.1 (c = 1.2, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 0.90 (t, J = 7.0 Hz, 3 H), 1.32 (s, 3 H), 1.20-1.50 (m, 4 H), 1.71 (dd, J = 6.4, 12.8 Hz, 1 H), 2.16 (dd, J = 7.4, 12.8 Hz, 1 H), 2.36 (br s, 1 H), 4.02 (q, J = 6.4 Hz, 1 H), 4.13 (t, J = 6.4 Hz, 1 H), 5.18 (dd, J = 0.9, 10.3 Hz, 1 H), 5.34 (dt, J = 1.3, 17.1 Hz, 1 H), 5.83 (ddd, J = 6.7, 10.3, 17.1 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 14.6, 17.8, 27.2, 45.1 (2 × C), 76.8, 82.6, 85.3, 117.1, 137.2. Anal. Calcd for C10H18O2: C, 70.55; H, 10.66; O, 18.8. Found: C, 70.35; H, 10.82; O, 18.82. Analytical data for 11: oil; [α]D
20 -16.3 (c = 1, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 0.92 (t, J = 7.0 Hz, 3 H), 1.21 (s, 3 H), 1.35 (m, 2 H), 1.57 (m, 2 H), 1.84 (dd, J = 7.1, 12.5 Hz, 1 H), 2.05 (dd, J = 6.7, 12.5 Hz, 1 H), 2.28 (br s, 1 H), 4.04 (m, 2 H), 5.19 (dt, J = 0.9, 10.2 Hz, 1 H), 5.34 (dt, J = 0.8, 17.2 Hz, 1 H), 5.84 (ddd, J = 6.7, 10.2, 17.2 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 14.7, 17.9, 27.8, 44.4, 45.2, 76.4, 82.4, 85.7, 117.4, 137.6. Anal. Calcd for C10H18O2: C, 70.55; H, 10.66; O, 18.8. Found: C, 70.77; H, 10.52; O, 18.69.
24 [α]D
20 -43.7 (c = 1.6, CHCl3); lit.5 [α]D
20 -37.1 (c = 1, CHCl3, 83% ee); lit.8 [α]D
20 -52.2 (c = 0.8, CHCl3, >96% ee).
25 [α]D
20 -45.3 (c = 1.8, CHCl3); lit.5 [α]D
20 -43.5 (c = 0.97, CHCl3, 83% ee).