Subscribe to RSS
DOI: 10.1055/s-2007-973893
Exploring Chemical Space with Organometallics: Ruthenium Complexes as Protein Kinase Inhibitors
Publication History
Publication Date:
03 April 2007 (online)
Abstract
Complementing organic elements with a metal center provides new opportunities for building three-dimensional structures with unique and defined shapes. Such access to unexplored chemical space may lead to the discovery of molecules with unprecedented properties. Along these lines, this account article describes our successful design of highly potent and selective ruthenium-based inhibitors for the protein kinases GSK-3 and Pim-1 by using the class of indolocarbazole alkaloids as a lead structure. The described ruthenium complexes are kinetically inert scaffolds in which the ruthenium has the function to organize the orientation of the organic ligands in the three-dimensional space.
-
1 Introduction
-
1.1 Biologically Relevant Chemical Space
-
1.2 Organic vs. Organometallic Compounds
-
1.3 Ruthenium as a Virtual Octahedral Carbon
-
2 Mimicking the Natural Product Staurosporine with Simple Ruthenium Complexes
-
3 Synthesis of Cycloruthenated Pyrido[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-diones
-
4 Discovery of Ruthenium Complexes as Protein Kinase Inhibitors
-
4.1 Octahedral Complexes
-
4.2 Half-Sandwich Complexes
-
5 Structures of Ruthenium Half-Sandwich Complexes Bound to Protein Kinase Pim-1
-
6 GSK-3 Inhibition in Mammalian Cells, Frog Embryos, and Zebrafish Embryos
-
7 Summary and Outlook
Key words
bioorganometallic chemistry - protein kinases - inhibitors - ruthenium - mammalian cells
- See, for example:
-
1a
Schreiber SL. Bioorg. Med. Chem. 1998, 6: 1127 -
1b
Mayer TU. Trends Cell Biol. 2003, 13: 270 -
1c
Ding S.Schultz PG. Nature Biotechnol. 2004, 22: 833 - For chemical space, see:
-
2a
Burke MD.Schreiber SL. Angew. Chem. Int. Ed. 2004, 43: 46 -
2b
Dobson CM. Nature (London) 2004, 432: 824 -
2c
Lipinski C.Hopkins A. Nature (London) 2004, 432: 855 -
2d
Koch MA.Schuffenhauer A.Scheck M.Wetzel S.Casaulta M.Odermatt A.Ertl P.Waldmann H. Proc. Natl. Acad. Sci. U.S.A. 2005, 102: 17272 - For bioorganometallic and medicinal organometallic chemistry, see:
-
4a
Severin K.Bergs R.Beck W. Angew. Chem. Int. Ed. 1998, 37: 1634 -
4b
Grotjahn DB. Coord. Chem. Rev. 1999, 190-192: 1125 - 4c Jaouen G., Ed.; J. Organomet. Chem. 1999, 589: 1
-
4d
Metzler-Nolte N. Angew. Chem. Int. Ed. 2001, 40: 1040 -
4e
Fish RH.Jaouen G. Organometallics 2003, 22: 2166 -
4f
Stodt R.Gencaslan S.Müller IM.Sheldrick WS. Eur. J. Inorg. Chem. 2003, 1873 -
4g
Schlawe D.Majdalani A.Velcicky J.Heßler E.Wieder T.Prokop A.Schmalz H.-G. Angew. Chem. Int. Ed. 2004, 43: 1731 -
4h
Van Staveren DR.Metzler-Nolte N. Chem. Rev. 2004, 104: 5931 -
4i
Ott I.Kircher B.Gust R. J. Inorg. Biochem. 2004, 98: 485 -
4j
Bioorganometallics
Jaouen G. Wiley-VCH; Weinheim: 2005. -
4k
Yan YK.Melchart M.Habtemariam A.Sadler PJ. Chem. Commun. 2005, 4764 -
4l
Allardyce CS.Dorcier A.Scolaro C.Dyson PJ. Appl. Organomet. Chem. 2005, 19: 1 -
4m
Dyson PJ.Sava G. Dalton Trans. 2006, 1929 -
4n
Schatzschneider U.Metzler-Nolte N. Angew. Chem. Int. Ed. 2006, 45: 1504 - Some examples of using metals for structural roles in protein binders. See:
-
5a
Lebon F.De Rosny E.Reboud-Ravaux M.Durant F. Eur. J. Med. Chem. 1998, 33: 733 -
5b
Lebon F.Ledecq M.Benatallah Z.Sicsic S.Lapouyade R.Kahn O.Garcon A.Reboud-Ravaux M.Durant F. J. Chem. Soc., Perkin Trans. 2 1999, 795 -
5c
Cherrier MV.Martin L.Cavazza C.Jacquamet L.Lemaire D.Gaillard J.Fontecilla-Camps JC. J. Am. Chem. Soc. 2005, 127: 10075 - For a strategy of targeting metal complexes to enzyme active sites, see:
-
6a
Wilker JJ.Dmochowski IJ.Dawson JH.Winkler JR.Gray HB. Angew. Chem. Int. Ed. 1999, 38: 90 -
6b
Dmochowski IJ.Crane BR.Wilker JJ.Winkler JR.Gray HB. Proc. Natl. Acad. Sci. U.S.A. 1999, 96: 12987 -
6c
Dunn AR.Dmochowski IJ.Winkler JR.Gray HB. J. Am. Chem. Soc. 2003, 125: 12450 -
6d
Dunn AR.Belliston-Bittner W.Winkler JR.Getzoff ED.Stuehr DJ.Gray HB. J. Am. Chem. Soc. 2005, 127: 5169 - 7
Zhang L.Carroll PJ.Meggers E. Org. Lett. 2004, 6: 521 - 8
Bregman H.Williams DS.Atilla GE.Carroll PJ.Meggers E. J. Am. Chem. Soc. 2004, 126: 13594 - 9
Williams DS.Atilla GE.Bregman H.Arzoumanian A.Klein PS.Meggers E. Angew. Chem. Int. Ed. 2005, 44: 1984 - 10
Bregman H.Williams DS.Meggers E. Synthesis 2005, 1521 - 11
Debreczeni J.Bullock AN.Atilla GE.Williams DS.Bregman H.Knapp S.Meggers E. Angew. Chem. Int. Ed. 2006, 45: 1580 - 12
Bregman H.Carroll PJ.Meggers E. J. Am. Chem. Soc. 2006, 128: 877 - 13
Atilla-Gokcumen GE.Williams DS.Bregman H.Pagano N.Meggers E. ChemBioChem 2006, 7: 1443 - 14 Hypervalent carbon exists but cannot be exploited for structural chemistry. See for example pentacoordinated carbon in form of highly reactive carbonium ions:
Olah GA. Angew. Chem. Int. Ed. 1995, 34: 1393 - Nonmetallic elements of the third row or higher can form stable penta- and hexacoordinated geometries. See, for example:
-
15a
Martin JC. Science 1983, 221: 509 -
15b
Holmes RR. Chem. Rev. 1996, 96: 927 - 16
Taube H. Chem. Rev. 1952, 50: 69 - 17 The cysteine-containing tripeptide glutathione is present in virtually all mammalian cells at millimolar concentrations:
Kaplowitz N.Aw TY.Ookhtens M. Annu. Rev. Pharmacol. Toxicol. 1985, 25: 715 - 18
Dwyer FP.Reid IK.Shulman A.Laycock GM.Dixson S. Aust. J. Exp. Biol. Med. Sci. 1969, 47: 203 -
19a
Dwyer FP.Gyarfas EC.Rogers WP.Koch JH. Nature (London) 1952, 170: 190 -
19b
Dwyer FP.Gyarfas EC.Wright RD.Shulman A. Nature (London) 1957, 179: 425 - 20 For KP1019, see:
Hartinger CG.Zorbas-Seifried S.Jakupec MA.Kynast B.Zorbas H.Keppler BK. J. Inorg. Biochem. 2006, 100: 891 - 21 For NAMI-A, see:
Dyson PJ.Sava G. Dalton Trans. 2006, 16: 1929 - For clever synthetic strategies of ruthenium complexes, see for example:
-
22a
Gill TP.Mann KR. Organometallics 1982, 1: 485 -
22b
Anderson PA.Deacon GB.Haarmann KH.Keene FR.Meyer TJ.Reitsma DA.Skelton BW.Strouse GF.Thomas NC.Treadway JA.White AH. Inorg. Chem. 1995, 34: 6145 - For staurosporine, see:
-
23a
Rüegg UT.Burgess GM. Trends Pharm. Sci. 1989, 10: 218 -
23b
Tamaoki T.Nakano H. Nature Biotechnol. 1990, 8: 732 -
23c
Omura S.Sasaki Y.Iwai Y.Takeshima H. J. Antibiot. 1995, 48: 535 - For indolocarbazole protein kinase inhibitors, see:
-
24a
Kase H.Iwahashi K.Nakanishi S.Matsuda Y.Yamada K.Takahashi M.Murakata C.Sato A.Kaneko M. Biochem. Biophys. Res. Commun. 1987, 142: 436 -
24b
Martiny-Baron G.Kazanietz MG.Mischak H.Blumberg PM.Kochs G.Hug H.Marme D.Schachtele C. J. Biol. Chem. 1993, 268: 9194 -
24c
Caravatti G.Meyer T.Fredenhagen A.Trinks U.Mett H.Fabbro D. Bioorg. Med. Chem. Lett. 1994, 4: 399 -
24d
Prudhomme M. Curr. Pharm. Des. 1997, 3: 265 -
24e
Jackson JR.Gilmartin A.Imburgia C.Winkler JD.Marshall LA.Roshak A. Cancer Res. 2000, 60: 566 -
24f
Pindur U.Kim YS.Mehrabani F. Curr. Med. Chem. 1999, 6: 29 -
24g
Slater MJ.Cockerill S.Baxter R.Bonser RW.Gohil K.Gowrie C.Robinson JE.Littler E.Parry N.Randall R.Snowden W. Bioorg. Med. Chem. 1999, 7: 1067 - For co-crystal structures of staurosporine with protein kinases, see for example:
-
25a
Toledo LM.Lydon NB. Structure (London) 1997, 5: 1551 -
25b
Lawrie AM.Noble MEM.Tunnah P.Brown NR.Johnson LN.Endicott JA. Nature Struct. Biol. 1997, 4: 796 -
25c
Prade L.Engh RA.Girod A.Kinzel V.Huber R.Bossemeyer D. Structure (London) 1997, 5: 1627 -
25d
Jacobs MD.Black J.Futer O.Swenson L.Hare B.Fleming M.Saxena K. J. Biol. Chem. 2005, 280: 13728 - 26
Huwe A.Mazitschek R.Giannis A. Angew. Chem. Int. Ed. 2003, 42: 2122 - A related approach was used to synthesize granulatimides:
-
27a
Yoshida T.Nishiyachi M.Nakashima N.Murase M.Kotani E. Chem. Pharm. Bull. 2002, 50: 872 -
27b
Yoshida T.Nishiyachi M.Nakashima N.Murase M.Kotani E. Chem. Pharm. Bull. 2003, 51: 209 - A related cycloruthenation of 2-pyridylindoles and 2-pyridylpyrroles has been reported. See:
-
28a
Thummel RP.Hedge V. J. Org. Chem. 1989, 54: 1720 -
28b
Wu F.Chamchoumis CM.Thummel RP. Inorg. Chem. 2000, 39: 584 - Crystal structures of organometallic compounds bound to enzymes:
-
29a
Heine A.Stura EA.Yli-Kauhaluoma JT.Gao C.Deng Q.Beno BR.Houk KN.Janda KD.Wilson IA. Science 1998, 279: 1934 -
29b
Di Gleria K.Nickerson DP.Hill HAO.Wong L.-L.Fülöp V. J. Am. Chem. Soc. 1998, 120: 46 -
29c
McNae IW.Fishburne K.Habtemariam A.Hunter TM.Melchart M.Wang F.Walkinshaw MD.Sadler PJ. Chem. Commun. 2004, 1786 - For attractive interactions between organic fluorine and carbonyl groups, see:
-
30a
Hof F.Scofield DM.Schweizer WB.Diederich F. Angew. Chem. Int. Ed. 2004, 43: 5056 -
30b
Olsen JA.Banner DW.Seiler P.Wagner B.Tschopp T.Obst-Sander U.Kansy M.Müller K.Diederich F. ChemBioChem 2004, 5: 666 - 31
Paulini R.Müller K.Diederich F. Angew. Chem. Int. Ed. 2005, 44: 1788 - Wnt signaling:
-
32a
Morin PJ. BioEssays 1999, 21: 1021 -
32b
Cohen P.Frame S. Nature Rev. Mol. Cell Biol. 2001, 2: 769 -
32c
Jope RS.Johnson GVW. Trends Biochem. Sci. 2004, 29: 95 - 33
Zhang F.Phiel CJ.Spece L.Gurvich N.Klein PS. J. Biol. Chem. 2003, 278: 33067 - 34 For kenpaullone, see:
Leost M.Schultz C.Link A.Wu Y.-Z.Biernat J.Mandelkow E.-M.Bibb JA.Snyder GL.Greengard P.Zaharevitz DW.Gussio R.Senderowicz AM.Sausville EA.Kunick C.Meijer L. Eur. J. Biochem. 2000, 267: 5983 - 35 For BIO, see:
Meijer L.Skaltsounis A.-L.Magiatis P.Polychronopoulos P.Knockaert M.Leost M.Ryan XP.Vonica CA.Brivanlou A.Dajani R.Crovace C.Tarricone C.Musacchio A.Roe SM.Pearl L.Greengard P. Chem. Biol. 2003, 10: 1255 - Effects of LiCl on the development of Zebrafish embryos:
-
36a
Stachel SE.Grunwald DJ.Myers PZ. Development (Cambridge, UK) 1993, 117: 1261 -
36b
Driever W. Curr. Opin. Gen. Dev. 1995, 5: 610 -
36c
Van de Water S.van de Wetering M.Joore J.Esseling J.Bink R.Clevers H.Zivkovic D. Development (Cambridge, UK) 2001, 128: 3877 - Effects of LiCl on the development of Xenopus embryos:
-
37a
Busa WB.Gimlich RL. Dev. Biol. 1989, 132: 315 -
37b
Klein PS.Melton DA. Proc. Natl. Acad. Sci. U.S.A. 1996, 93: 8455 -
37c
Heasman J. Development (Cambridge, UK) 1997, 124: 4179 - For p53-induced apoptosis, see:
-
38a
Levine AJ. Cell 1997, 88: 323 -
38b
Vousden KH.Lu X. Nature Rev. Cancer 2002, 2: 594 - For the role of MDM2 in deactivating p53, see:
-
39a
Momand J.Zambetti GP.Olson DC.George D.Levine AJ. Cell 1992, 69: 1237 -
39b
Honda R.Tanaka H.Yasuda H. FEBS Lett. 1997, 420: 25 -
39c
Tovar C.Rosinski J.Filipovic Z.Higgins B.Kolinsky K.Hilton H.Zhao X.Vu BT.Qing W.Packman K.Myklebost O.Heimbrook DC.Vassilev LT. Proc. Natl. Acad. Sci. U.S.A. 2006, 103: 1888 -
40a
Watcharasit P.Bijur GN.Song L.Zhu J.Chen X.Jope RS. J. Biol. Chem. 2003, 278: 48872 -
40b
Kulikov R.Boehme KA.Blattner C. Mol. Cell. Biol. 2005, 25: 7170 - 41 Pharmacologic modulation of GSK-3β promotes p53-dependent apoptosis in colorectal cancer cells:
Tan J.Zhuang L.Leong H.-S.Iyer NG.Liu ET.Yu Q. Cancer Res. 2005, 65: 9012 - 42
Hom RK.Chi DY.Katzenellenbogen JA. J. Org. Chem. 1996, 61: 2624 - 43
Streu C.Meggers E. Angew. Chem. Int. Ed. 2006, 45: 5645
References and Notes
We are here using a more general definition of the term ‘organometallic’ which includes all metal/organic hybrid compounds without restriction to substances with metal-carbon bonds.