References and Notes
1a
Perlmutter P.
Conjugate Addition Reactions in Organic Synthesis, In Tetrahedron Organic Chemistry Series
Vol. 9:
Baldwin JE.
Magnus PD.
Pergamon Press;
Oxford:
1992.
1b
Rossiter BE.
Swingle NM.
Chem. Rev.
1992,
92:
771
1c
Leonard J.
Díez-Barra E.
Merino S.
Eur. J. Org. Chem.
1998,
2051
1d
Yamamguchi M. In Comprehensive Asymmetric Catalysis I-III
Vol. 3:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
p.1121-1139
1e
Jha SC.
Joshi NN.
ARKIVOC
2002,
(vii):
167
1f
Iguchi M.
Yamada K.
Tomioka K.
Organolithiums in Enantioselective Synthesis, In Topics in Organometallic Chemistry
Vol. 5:
Hodgson DM.
Springer;
Berlin:
2003.
p.21-36
1g
Davies SG.
Smith AD.
Price PD.
Tetrahedron: Asymmetry
2005,
16:
2833
1h
Wu G.
Huang M.
Chem. Rev.
2006,
106:
2596
See, for example:
2a
Tamaru Y.
Harada T.
Iwawoto H.
Yoshida Z.-I.
J. Am. Chem. Soc.
1978,
100:
5221
2b
Mpango GB.
Mahalanabis KK.
Damghani ZM.
Snieckus V.
Tetrahedron Lett.
1980,
21:
4823
2c
Mpango GB.
Snieckus V.
Tetrahedron Lett.
1980,
21:
4827
2d
Hashimoto M.
Hashimoto K.
Shirahama H.
Tetrahedron
1996,
52:
1931
2e
Forns P.
Díez A.
Rubiralta M.
Tetrahedron
1996,
52:
3563
2f
Forns P.
Díez A.
Rubiralta M.
J. Org. Chem.
1996,
61:
7882
2g
Amat M.
Pérez P.
Llor N.
Bosch J.
Org. Lett.
2002,
4:
2787
For reviews on synthetic uses of α-lithiodithioacetals, see:
3a
Seebach D.
Synthesis
1969,
17
3b
Krief A.
Tetrahedron
1980,
36:
2531
3c
Page PCB.
van Niel MB.
Prodger JC.
Tetrahedron
1989,
45:
7643
3d
Yus M.
Nájera C.
Foubelo F.
Tetrahedron
2003,
59:
6147
4a
Tamaru Y.
Harada T.
Iwamoto H.
Yoshida Z.
J. Am. Chem. Soc.
1978,
100:
5221
4b
Tamaru Y.
Harada T.
Yoshida Z.
J. Am. Chem. Soc.
1979,
101:
1316
4c
Gómez-Pardo D.
Desmaele D.
d’Angelo J.
Tetrahedron Lett.
1992,
33:
6632
5
Brewster AG.
Broady S.
Hughes M.
Moloney MG.
Woods G.
Org. Biomol. Chem.
2004,
2:
1800 ; and references therein
6a
Manteca I.
Sotomayor N.
Lete E.
Tetrahedron Lett.
1996,
33:
7841
6b
Collado MI.
Sotomayor N.
Villa M.-J.
Lete E.
Tetrahedron Lett.
1996,
37:
6193
6c
Collado MI.
Manteca I.
Sotomayor N.
Villa MJ.
Lete E.
J. Org. Chem.
1997,
62:
2080
6d
Manteca I.
Etxarri B.
Ardeo A.
Arrasate S.
Osante I.
Sotomayor N.
Lete E.
Tetrahedron
1998,
54:
12361
For reviews on Parham cyclization, see:
7a
Parham WE.
Bradsher CK.
Acc. Chem. Res.
1982,
15:
300
7b
Gray M.
Tinkl M.
Snieckus V. In Comprehensive Organometallic Chemistry II
Vol. 11:
Abel EW.
Stone FGA.
Wilkinson G.
Pergamon;
Exeter:
1995.
p.66-92
7c
Ardeo A.
Collado MI.
Osante I.
Ruiz J.
Sotomayor N.
Lete E. In Targets in Heterocyclic Systems
Vol. 5:
Atanassi O.
Spinelli D.
Italian Society of Chemistry;
Rome:
2001.
p.393-418
7d
Mealy MM.
Bailey WF.
J. Organomet. Chem.
2002,
649:
59
7e
Sotomayor N.
Lete E.
Curr. Org. Chem.
2003,
7:
275
7f
Arrasate S.
Sotomayor N.
Lete E. In New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles
Vicario JL.
Badía D.
Carrillo L.
Research Signpost;
India:
2005.
p.223-248
For examples of the tandem Parham cyclization-α-amido-alkylation reaction, see:
8a
González-Temprano I.
Sotomayor N.
Lete E.
Synlett
2002,
593
8b
González I.
Osante I.
Sotomayor N.
Lete E.
J. Org. Chem.
2004,
69:
3875
8c
Osante I.
Lete E.
Sotomayor N.
Tetrahedron Lett.
2004,
45:
1253
For reviews on N-acyliminium ion cyclizations, see:
9a
Speckamp WN.
Hiemstra H.
Tetrahedron
1985,
41:
4367
9b
Hiemstra H.
Speckamp WN. In
The Alkaloids
Vol. 32:
Academic Press;
New York:
1988.
p.271-339
9c
Hiemstra H.
Speckamp WN. In Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.1047-1082
9d
de Koning H.
Speckamp WN.
Stereoselective Synthesis, In Houben-Weyl, Methoden der organischen Chemie
Vol. E21b:
Helmchen G.
Hoffmann RW.
Muzler J.
Schaumann E.
Thieme;
Stuttgart:
1996.
p.1952-2010
9e
Speckamp WN.
Moolenaar MJ.
Tetrahedron
2000,
56:
3817
9f
Marson CM.
ARKIVOC
2001,
(i):
1
9g
Maryanoff BE.
Zhang H.-C.
Cohen JH.
Turchi IJ.
Maryanoff CA.
Chem. Rev.
2004,
104:
1431
9h
Royer J.
Bonin M.
Micouin L.
Chem. Rev.
2004,
104:
2311
9i
Dobbs AP.
Rossiter S. In Comprehensive Organic Functional Group Transformations II
Vol. 3:
Katritzky AR.
Taylor RJK.
Elsevier;
Oxford:
2005.
p.419-450
10
Etxarri B.
González-Temprano I.
Manteca I.
Sootmayor N.
Lete E.
Synlett
1999,
1486
11 Conjugate addition reaction of enolates and cuprates to the unactivated dihydropyrroloisoquinolones always failed, and unreacted starting material was always recovered: González-Temprano I.
PhD Thesis
Universidad del País Vasco;
Spain:
2003.
12 See reference 6c.
13 See for instance: Osante I.
Abdullah MN.
Arrasate S.
Sotomayor N.
Lete E.
ARKIVOC
2007,
(iv):
206
14
Typical Procedure: MeLi (1.50 mL of a 1.6 M solution, 2.4 mmol) was added dropwise over a suspension of CuI (228 mg, 1.2 mmol) in anhyd THF (5 mL) at 0 °C. After 30 min, the mixture was cooled to -78 ºC, and a solution of lactam 2a (157 mg, 0.4 mmol) in THF (10 mL) was added. The reaction mixture was stirred for 3 h, allowed to warm to 0 ºC, and stirred at this temperature for 12 h. The reaction was quenched by sequential addition of 12% aq NH4OH (20 mL) and sat. NH4Cl (10 mL) at 0 °C. After the mixture was allowed to warm to r.t., the organic layer was separated, and the aqueous phase was extracted with CH2Cl2 (3 × 15 mL). The combined organic extracts were dried (Na2SO4) and concentrated in vacuo. Flash column chromatography (silica gel, 70% hexane-EtOAc) afforded the pyrroloisoquinolone 6a as a colorless oil (140 mg, 85%) as a single diastereomer. IR (CHCl3): 1736, 1692 cm-1. 1H NMR (CDCl3): δ = 1.36 (t, J = 6.7 Hz, 3 H), 1.41 (s, 3 H), 2.61-3.04 (m, 4 H), 3.36 (d, J = 11.9 Hz, 1 H), 3.84 (s, 6 H), 4.29-4.32 (m, 1 H), 5.21 (s, 2 H), 6.57 (s, 1 H), 6.69 (s, 1 H), 7.25-7.35 (m, 5 H). 13C NMR (CDCl3): δ = 13.9, 21.9, 28.8, 34.8, 44.2, 55.6, 55.7, 55.9, 61.5, 66.9, 107.6, 11.7, 124.9, 127.8, 128.0, 128.4, 133.2, 135.4, 147.6, 147.7, 166.3, 169.2. MS (EI): m/z (rel. intensity) = 409 (8) [M+], 395 (26), 394 (100), 259 (32), 258 (14), 244 (20), 206 (10), 204 (10), 91 (52). Anal. Calcd for C24H27NO5: C, 70.40; H, 6.65; N, 3.42. Found: C, 70.35; H, 6.43; N, 3.16.
15 We have observed that adducts, once formed, do not appear to undergo reversal to the unsaturated lactam, precluding the possibility of thermodynamic factors being responsible for the stereochemical results.
For representative examples, see:
16a
Meyers AI.
Snyder L.
J. Org. Chem.
1992,
57:
3814
16b
Meyers AI.
Snyder L.
J. Org. Chem.
1993,
58:
36
16c
Andres CJ.
Lee PH.
Nguyen TH.
Meyers AI.
J. Org. Chem.
1995,
60:
3189
16d
Dyer J.
Keeling S.
Moloney MG.
Tetrahedron Lett.
1996,
37:
4573
16e
Dyer J.
King A.
Keeling S.
Moloney MG.
J. Chem. Soc., Perkin Trans. 1
2000,
2793
16f
Chan PWH.
Cottrel JF.
Moloney MG.
J. Chem. Soc., Perkin Trans. 1
2001,
2997
16g
Mamal A.
Hughes NE.
Wurthmann A.
Madalengoitia JS.
J. Org. Chem.
2000,
66:
6483