References and Notes
1a
McGrath MP.
Sall ED.
Tremont SJ.
Chem. Rev.
1995,
95:
381
1b
Boffa LS.
Novak BM. In
Transition Metal Catalysis in Macromolecular Design
Jun C.-H.
Lee H.
Hong J.-B.
Lee D.-Y.
ACS Symposium Series 760, American Chemical Society;
Washington DC:
1988.
p.94
2a
Tremont SJ.
Remsen EE.
Macromolecules
1990,
23:
1984
2b
Scott PJ.
Rempel GL.
Macromolecules
1992,
25:
2811
3a McEntire EE, and Knifton JF. inventors; US Patent 4,657,984.
3b Wideman LG. inventors; US Patent 5,134,200.
4a
Narayanan P.
Clubley BG.
Cole-Hamilton DJ.
J. Chem. Soc., Chem. Commun.
1991,
1628
4b
Narayanan P.
Kaye B.
Cole-Hamilton DJ.
J. Mater. Chem.
1993,
3:
19
5a
Guo X.
Farwaha R.
Rempel GL.
Macromolecules
1990,
23:
5047
5b
Guo X.
Rempel GL.
Macromolecules
1992,
25:
883
5c
Iraqi A.
Seth S.
Vincent CA.
Cole-Hamilton DJ.
Watkinson MD.
Graham IM.
Jeffrey D.
J. Mater. Chem.
1992,
2:
1057
6a
Rosedale JH.
Bates FS.
J. Am. Chem. Soc.
1988,
110:
3542
6b
Gehlsen MD.
Bates FS.
Macromolecules
1993,
26:
4122
6c
Bhattacharjee S.
Bhowmick AK.
Avasthi BN.
Ind. Eng. Chem. Res.
1991,
30:
1086
6d
Gilliom LR.
Macromolecules
1989,
22:
662
7a
Jun C.-H.
Kang J.-B.
Kim J.-Y.
J. Organomet. Chem.
1993,
458:
193
7b
Kim J.-H.
Jun C.-H.
Bull. Korean Chem. Soc.
1999,
20:
27
8
Jun C.-H.
Hwang D.-C.
Polymer
1998,
39:
7143
9a
Soutif JC.
Brosse JC.
React. Polym.
1990,
12:
3
9b
Prabhakar LD.
Umarani C.
J. Marcromol. Sci., Pure Appl. Chem.
1995,
A32:
129
10a
Murai S.
Kakiuchi F.
Sekine S.
Tanaka Y.
Kamatani A.
Sonoda M.
Chatani N.
Nature
1993,
366:
529
10b
Kakiuchi F.
Tanaka Y.
Sato T.
Chatani N.
Murai S.
Chem. Lett.
1995,
679
10c
Kakiuchi F.
Sekine S.
Tanaka Y.
Kamatani A.
Sonoda M.
Chatani N.
Murai S.
Bull. Chem. Soc. Jpn.
1995,
68:
62
10d
Park
Y.-J.
Jun C.-H.
Bull. Korean Chem. Soc.
2005,
26:
871
11a
Gupta SK.
Weber WP.
Macromolecules
2002,
35:
3369
11b
Mabry JM.
Weber WP.
J. Polym. Sci., Part A: Polym. Chem.
2004,
42:
5514
12a
Jun C.-H.
Hong J.-B.
Kim Y.-H.
Chung K.-Y.
Angew. Chem. Int. Ed.
2000,
39:
3440 ; Angew. Chem.
2000,
112:
3582
12b
Jun C.-H.
Moon CW.
Hong J.-B.
Lim S.-G.
Chung K.-Y.
Kim Y.-H.
Chem. Eur. J.
2002,
8:
485
12c
Lim S.-G.
Lee JH.
Moon CW.
Hong J.-B.
Jun C.-H.
Org. Lett.
2003,
5:
2759
12d
Lim S.-G.
Ahn
J.-A.
Jun C.-H.
Org. Lett.
2004,
6:
4687
13
1a, 1b and 1c were purchased from Aldrich Chemical Co. and polymer specifications are as follows: 1a: MW = 3,400, 100% vinyl, M
w
/M
n
= 1.26; 1b: MW = 1,300, 43% vinyl and 57% internal, M
w
/M
n
= 1.09; 1c: MW = 1,500, 27% vinyl and 73% internal olefins, M
w
/M
n
= 1.08.
14
Typical Procedure for the Catalytic Reaction of 1 and 2 under 3 (Scheme 1, Scheme 2): A screw-capped pressure vial (1 mL) was charged with polybutadiene (1, 0.5 mmol), (PPh3)3RhCl (3, 0.025 mmol), ketimine (2, 1.0 mmol) and toluene (150 mg). The solution was stirred in a preheated oil bath (130 °C) for 3 h. After the reaction, the mixture was hydrolyzed using aq. HCl (4 N, 5 mL) and THF (5 mL) for 12 h and the product purified by column chromatography (SiO2, n-hexane-EtOAc, 8:1).
[18]
15 The degree of orthoalkylation (a) of the vinyl could be calculated by the following equation: incorporation rate a (%) = a/(a + b + c) Ž 100%; a = A/2, b = B/2, c = C-B/2. A is the area of 2.81-2.94 ppm (α-CH2 to CO); B is the area of 4.9-5.0 ppm (vinylic CH2); C is the area of 5.3-5.6 ppm (vinylic -CH in the vinyl group and internal -CH=C- isomerized from the vinyl group).
16 In o-acylphenyl-group-incorporated polybutadiene, the integration ratio of methylene hydrogens (ArCH2CH
2
)-methyl hydrogens of the acetyl group in the 1H NMR spectra is regarded as 2/3 if these two peaks are not clearly separated. In the case of o-heptanoylphenyl-incorporated polybutadiene, it is presumed that the integration ratio of methylene hydrogens (ArCH2CH
2
)-α-methylene hydrogens of the heptanoyl group is 2/2 since these two peaks overlap.
17 The amount of orthoalkylation (a) of the vinyl groups could be calculated by the following equation; incorporation rate = a/(a + b + c) Ž 100%; (a is the orthoalkylated vinyl group, b is the unreacted terminal olefin, c is the isomerized from the vinyl group, and d is the unreacted internal olefin). a = A/2, b = B/2, c = C-B/2-D/2, (a + b + c)/d = 43/57; A is the area of 2.81-2.94 ppm (α-CH2 to CO); B is the area of 4.9-5.0 ppm (vinylic CH2); C is the area of 5.3-5.6 ppm (internal -CH=CH- and vinylic -CH).
18
Compound 5aa: IR (CDCl3): 3064, 2914, 2847, 1682 (CO), 1435, 1354, 1250, 910, 758, 696 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.68-7.12 (br m, in phenyl group), 5.39 (br s, internal -CH=), 4.91 (br s, 2 H, terminal -CH=CH
2
), 2.81 (br s, 2 H, ArCH2), 2.53 (br s, 3 H, COCH3), 2.02 (br s), 1.50-1.25 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 202.09 (CO), 143.49-125.88, 114.55, 40.03-30.86, 29.90; M
w
/M
n
= 1.16.
Compound 5ab: IR (CDCl3): 2922, 2843, 1675 (CO), 1603, 1356, 1247, 1127, 1070, 1033, 910, 812, 732 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.45-6.75 (br m, in phenyl group), 5.40 (br s, internal -CH=), 4.90 (br s, terminal -CH=CH
2
), 3.76 (br s, 3 H, ArOCH3), 2.87 (br s, 2 H, ArCH2), 2.48 (br s, 3 H, COCH3), 2.02 (br s), 1.51-1.16 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 199.56 (CO), 162.00, 147.35, 134.96-127.70, 116.80-110.67, 55.33, 39.47-32.03, 29.42; M
w
/M
n
= 1.13.
Compound 5ac: IR (CDCl3): 2922, 2851, 1693 (CO), 1496, 1412, 1333, 1248, 1173, 1088, 962, 908, 830, 741 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.64-7.47 (br m, in phenyl group), 5.40 (br s, internal -CH=), 4.93 (br s, terminal -CH=CH
2
), 2.82 (br s, 2 H, ArCH2), 2.57 (br s, 3 H, COCH3), 2.16-2.02 (br s), 1.51-1.25 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 201.68 (CO), 143.82-115.09, 39.31-32.42, 30.41; M
w
/M
n
= 1.10.
Compound 5ad: IR (CDCl3): 2924, 1688 (CO), 1598, 1453, 1118, 910, 735 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.86-6.92 (br m, in phenyl group), 5.58 (br s, internal -CH=), 4.97 (br s, terminal -CH=CH
2
), 2.94 (br s, 4 H, ArCH2, COCH2), 2.02 (br s), 1.71 (br s), 1.28 (br s), 0.89-0.83 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 200.90 (CO), 143.91, 139.19, 135.41, 132.35-127.87, 122.44, 44.35, 42.46, 33.50, 31.37, 29.01, 25.24, 22.64, 14.62; M
w
/M
n
= 1.10.
Compound 5ba: IR (CDCl3): 2921, 2843, 1687 (CO), 1601, 1437, 1352, 1245, 1074, 967, 906, 759 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.63-7.14 (br m, in phenyl group), 5.28 (br m, internal -CH=), 4.94 (br s, terminal -CH=CH
2
), 2.81 (br s, 2 H, ArCH2), 2.60 (br s, 3 H, COCH3), 2.16 (br s), 1.72-1.21 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 202.19 (CO), 143.38, 138.17, 132.22-125.63, 35.92-29.97; M
w
/M
n
= 1.14.
Compound 5bb: IR (CDCl3): 2913, 2246, 1681 (CO), 1567, 1454, 1355, 1233, 1128, 1067, 1030, 964, 911, 807, 747 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.45-6.72 (br m, in phenyl group), 5.40 (br s, internal -CH=), 4.94 (br s, terminal -CH=CH
2
), 3.80 (br s, 3 H, ArOCH3), 2.89 (br s, 2 H, ArCH2), 2.51 (br s, 3 H, COCH3), 2.13 (br s), 1.64-1.24 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 199.68 (CO), 162.09, 147.05, 135.07-128.73, 116.99, 110.64, 55.44, 35.43-32.18, 29.60; M
w
/M
n
= 1.36.
Compound 5bc: IR (CDCl3): 2922, 2853, 1694 (CO), 1496, 1412, 1332, 1249, 1128, 966, 908, 830, 735cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.64-7.14 (br m, in phenyl group), 5.40 (br s, 1 H, internal -CH=), 4.95 (br s, terminal -CH=CH
2
), 2.82 (br s, 2 H, ArCH2), 2.56 (br s, 3 H, COCH3), 2.02 (br s), 1.51-1.26 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 201.65 (CO), 143.84, 141.81, 132.36-122.73, 38.15-31.06, 30.29; M
w
/M
n
= 1.25.
Compound 5bd: IR (CDCl3): 3056, 2923, 2851, 1654 (CO), 1579, 1482, 1434, 1188, 1092, 1025, 996, 909 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.48-7.17 (br m, in phenyl group), 5.38 (br s, internal -CH=), 4.97 (br s, terminal -CH=CH
2
), 2.83 (br s, 4 H, ArCH2, COCH2), 2.01 (br s), 1.68 (br s), 1.52-0.87 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 201.94 (CO), 145.82-117.59, 45.64, 32.42-24.57; M
w
/M
n
= 1.19.
Compound 5ca: IR (CDCl3): 2926, 2851, 2097, 1682 (CO), 1453, 1352, 1258, 1074, 1029, 906, 750cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.64-7.22 (br m, in phenyl group), 5.40 (br s, internal -CH=), 4.95 (br s, terminal -CH=CH
2
), 2.82 (br s, 2 H, ArCH2), 2.54 (br s, 3 H, COCH3), 2.03 (br s), 1.63-1.25 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 202.23 (CO), 143.15, 138.15, 134.58-125.77, 35.73-27.63; M
w
/M
n
= 1.15.
Compound 5cb: IR (CDCl3): 2922, 2853, 2248, 1681 (CO), 1567, 1454, 1354, 1233, 1121, 1067, 1030, 966, 911, 808, 737 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.68-7.25 (br m, in phenyl group), 6.73 (br s, in phenyl group), 5.40 (br s, internal -CH=), 4.94 (br s, terminal -CH=CH
2
), 3.80 (br s, 3 H, ArOCH3), 2.89 (br s, 2 H, ArCH2), 2.50 (br s, 3 H, COCH3), 2.02 (br s), 1.49-1.35 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 199.89 (CO), 162.21, 147.27, 132.80-128.89, 116.94, 110.51, 55.60, 35.61-32.16, 29.40; M
w
/M
n
= 1.25.
Compound 5cc: IR (CDCl3): 2919, 2847, 1693 (CO), 1496, 1437, 1332, 1249, 1126, 966, 892, 831, 743 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.51-7.11 (br m, in phenyl group), 5.41 (br s, internal -CH=), 4.95 (br s, terminal -CH=CH
2
), 2.82 (br s, 2 H, ArCH2), 2.56 (br s, 3 H, COCH3), 2.03 (br s), 1.62-1.22 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 201.37 (CO), 143.71-122.43, 114.50, 36.60-30.47, 27.40; M
w
/M
n
= 1.27.
Compound 5cd: IR (CDCl3): 3057, 2928, 1658 (CO), 1576, 1489, 1434, 1188, 1093, 1029, 909 cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.52-7.20 (br m, in phenyl group), 5.39 (br s, internal -CH=), 4.96 (br s, terminal -CH=CH
2
), 2.84 (br s, 4 H, ArCH2, COCH2), 2.02 (br s), 1.64 (br s), 1.31-1.18 (br m), 0.90-0.87 (br m); 13C NMR (77.26 MHz, CDCl3): δ = 196.49 (CO), 135.02-127.49, 44.56, 31.60-29.44; M
w
/M
n
= 1.19.