ABSTRACT
Nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) share similar morphological characteristics despite the obvious etiological differences between the two conditions. In both conditions the first manifestation of injury is the accumulation of fat within hepatocytes (steatosis), and in a proportion of patients this is followed by the development of necroinflammatory activity that leads to cirrhosis. Steatosis alone is considered to be relatively innocuous and is usually reversible, and it is the development of liver cell ballooning and inflammation (steatohepatitis) that determines whether a patient progresses to irreversible liver damage and fibrosis. This has led to the two-hit theory in which the first hit is accumulation of fat in the liver and the second hit involves an inflammatory insult or challenge to the liver, for example, through oxidative stress or in response to pathogenic stimuli such as endotoxin. Although the nature of the hits remains poorly understood, it is clear that the critical event in progression is the development of inflammation, and the fact that it is impossible to distinguish alcoholic from nonalcoholic steatohepatitis on histological grounds suggests that common pathogenic mechanisms are involved. We focus on the role of cytokines and particularly chemokines in instigating and driving the inflammatory infiltrate in steatohepatitis. A better understanding of this process might allow therapeutic intervention to switch off the inflammatory response before irreversible damage occurs in both ALD and NAFLD.
KEYWORDS
Endothelium - steatohepatitis - chemokines - ethanol - inflammation - adhesion molecules
REFERENCES
1
Kojima H, Sakurai S, Uemura M et al..
Difference and similarity between non-alcoholic steatohepatitis and alcoholic liver disease.
Alcohol Clin Exp Res.
2005;
29
259S-263S
2
Farrell G C, Larter C Z.
Nonalcoholic fatty liver disease: from steatosis to cirrhosis.
Hepatology.
2006;
43
S99-S112
3
Clark J M.
The epidemiology of nonalcoholic fatty liver disease in adults.
J Clin Gastroenterol.
2006;
40(suppl 1)
S5-S10
4
Day C P.
From fat to inflammation.
Gastroenterology.
2006;
130
207-210
5
Lieber C S.
Alcoholic liver disease: new insights in pathogenesis lead to new treatments.
J Hepatol.
2000;
32
113-128
6
Molina P E, McClain C, Valla D et al..
Molecular pathology and clinical aspects of alcohol-induced tissue injury.
Alcohol Clin Exp Res.
2002;
26
120-128
7
Lumeng L, Crabb D W.
Genetic aspects and risk factors in alcoholism and alcoholic liver disease.
Gastroenterology.
1994;
107
572-588
8
Harrison S A, Diehl A M.
Fat and the liver: a molecular overview.
Semin Gastrointest Dis.
2002;
13
3-16
9
Yang S, Lin H, Diehl A M.
Fatty liver vulnerability to endotoxin-induced damage despite NF-kappaB induction and inhibited caspase 3 activation.
Am J Physiol Gastrointest Liver Physiol.
2001;
281
G382-G392
10
Day C P.
Natural history of NAFLD: remarkably benign in the absence of cirrhosis.
Gastroenterology.
2005;
129
375-378
11
Adams L A, Angulo P.
Recent concepts in non-alcoholic fatty liver disease.
Diabet Med.
2005;
22
1129-1133
12
Reddy J K, Rao M S.
Lipid metabolism and liver inflammation: II. Fatty liver disease and fatty acid oxidation.
Am J Physiol Gastrointest Liver Physiol.
2006;
290
G852-G858
13
McCullough A J.
Pathophysiology of nonalcoholic steatohepatitis.
J Clin Gastroenterol.
2006;
40
S17-S29
14
Feldstein A E, Werneburg N W, Canbay A et al..
Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway.
Hepatology.
2004;
40
185-194
15
Feldstein A E, Gores G J.
Apoptosis in alcoholic and nonalcoholic steatohepatitis.
Front Biosci.
2005;
10
3093-3099
16
Mari M, Caballero F, Colell A et al..
Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis.
Cell Metab.
2006;
4
185-198
17
Mundt B, Wirth T, Zender L et al..
Tumour necrosis factor related apoptosis inducing ligand (TRAIL) induces hepatic steatosis in viral hepatitis and after alcohol intake.
Gut.
2005;
54
1590-1596
18
Bradbury M W.
Lipid metabolism and liver inflammation: I. Hepatic fatty acid uptake: possible role in steatosis.
Am J Physiol Gastrointest Liver Physiol.
2006;
290
G194-G198
19
Leclercq I A, Farrell G C, Field J, Bell D R, Gonzalez F J, Robertson G R.
CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis.
J Clin Invest.
2000;
105
1067-1075
20
Robertson G, Leclercq I, Farrell G C.
Nonalcoholic steatosis and steatohepatitis: II. Cytochrome P-450 enzymes and oxidative stress.
Am J Physiol Gastrointest Liver Physiol.
2001;
281
G1135-G1139
21
Hubscher S G.
Histological assessment of non-alcoholic fatty liver disease.
Histopathology.
2006;
49
450-465
22
Falck-Ytter Y, Younossi Z M, Marchesini G, McCullough A J.
Clinical features and natural history of nonalcoholic steatosis syndromes.
Semin Liver Dis.
2001;
21
17-26
23
Chedid A, Mendenhall C L, Gartside P, French S W, Chen T, Rabin L.
Prognostic factors in alcoholic liver disease. The VA Cooperative Study Group.
Am J Gastroenterol.
1991;
86
210-216
24
Wanless I R, Shiota K.
The pathogenesis of nonalcoholic steatohepatitis and other fatty liver diseases: a four-step model including the role of lipid release and hepatic venular obstruction in the progression to cirrhosis.
Semin Liver Dis.
2004;
24
99-106
25
French S W, Nash J, Shitabata P et al..
Pathology of alcoholic liver disease. The VA Cooperative Group.
Semin Liver Dis.
1993;
13
154-169
26
Day C P.
Who gets alcoholic liver disease: nature or nurture'.
J R Coll Physicians Lond.
2000;
34
557-562
27
Aloisi F, Pujol-Borrell R.
Lymphoid neogenesis in chronic inflammatory diseases.
Nat Rev Immunol.
2006;
6
205-217
28
Savill J, Dransfield I, Gregory C, Haslett C.
A blast from the past: clearance of apoptotic cells regulates immune responses.
Nat Rev Immunol.
2002;
2
965-975
29
Crispe I N.
Hepatic T cells and liver tolerance.
Nat Rev Immunol.
2003;
3
51-62
30
Mehal W Z, Juedes A E, Crispe I N.
Selective retention of activated CD8 + T cells by the normal liver.
J Immunol.
1999;
163
3202-3210
31
Adams D H, Eksteen B.
Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease.
Nat Rev Immunol.
2006;
6
244-251
32
Klugewitz K, Adams D H, Emoto M, Eulenburg K, Hamann A.
The composition of intrahepatic lymphocytes: shaped by selective recruitment'.
Trends Immunol.
2004;
25
590-594
33
International Group .
Alcoholic liver disease: morphological manifestations.
Lancet.
1981;
1
707-771
34
Bonder C S, Ajuebor M N, Zbytnuik L D, Kubes P, Swain M G.
Essential role for neutrophil recruitment to the liver in concanavalin A-induced hepatitis.
J Immunol.
2004;
172
45-53
35
Jaeschke H.
Neutrophil-mediated tissue injury in alcoholic hepatitis.
Alcohol.
2002;
27
23-27
36
Natori S, Rust C, Stadheim L M, Srinivasan A, Burgart L J, Gores G J.
Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis.
J Hepatol.
2001;
34
248-253
37
Taieb J, Mathurin P, Elbim C et al..
Blood neutrophil functions and cytokine release in severe alcoholic hepatitis: effect of corticosteroids.
J Hepatol.
2000;
32
579-586
38
Maltby J, Wright S, Bird G, Sheron N.
Chemokine levels in human liver homogenates: associations between gro alpha and histopathological evidence of alcoholic hepatitis.
Hepatology.
1996;
24
1156-1160
39
Burra P, Hubscher S G, Shaw J, Elias E, Adams D H.
Is the intercellular adhesion molecule-1/leukocyte function associated antigen 1 pathway of leukocyte adhesion involved in the tissue damage of alcoholic hepatitis'.
Gut.
1992;
33
268-271
40
Hui A Y, Friedman S L.
Molecular basis of hepatic fibrosis.
Expert Rev Mol Med.
2003;
2003
1-23
41
Tsukamoto H, Lu S C.
Current concepts in the pathogenesis of alcoholic liver injury.
FASEB J.
2001;
15
1335-1349
42
Stewart S F, Vidali M, Day C P, Albano E, Jones D E.
Oxidative stress as a trigger for cellular immune responses in patients with alcoholic liver disease.
Hepatology.
2004;
39
197-203
43
Chedid A, Mendenhall C L, Moritz T E et al..
Cell-mediated hepatic injury in alcoholic liver disease. Veterans Affairs Cooperative Study Group 275.
Gastroenterology.
1993;
105
254-266
44
Haydon G, Lalor P F, Hubscher S G, Adams D H.
Lymphocyte recruitment to the liver in alcoholic liver disease.
Alcohol.
2002;
27
29-36
45
Adams D H, Afford S C.
Effector mechanisms of nonsuppurative destructive cholangitis in graft-versus-host disease and allograft rejection.
Semin Liver Dis.
2005;
25
281-297
46
Afford S C, Randhawa S, Eliopoulos A G, Hubscher S G, Young L S, Adams D H.
CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection.
J Exp Med.
1999;
189
441-446
47
Galle P R, Hofmann W J, Walczak H et al..
Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage.
J Exp Med.
1995;
182
1223-1230
48
Friedman S L.
Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury.
J Biol Chem.
2000;
275
2247-2250
49
Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T.
Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.
J Hepatol.
2002;
36
200-209
50
Buckley C D, Pilling D, Lord J M, Akbar A N, Scheel-Toellner D, Salmon M.
Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation.
Trends Immunol.
2001;
22
199-204
51
Parsonage G, Filer A D, Haworth O et al..
A stromal address code defined by fibroblasts.
Trends Immunol.
2005;
26
150-156
52
Iredale J P, Benyon R C, Pickering J et al..
Mechanisms of spontaneous resolution of rat liver fibrosis: hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors.
J Clin Invest.
1998;
102
538-549
53
Duffield J S, Forbes S J, Constandinou C M et al..
Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair.
J Clin Invest.
2005;
115
56-65
54
Gordon S.
Alternative activation of macrophages.
Nat Rev Immunol.
2003;
3
23-35
55
Sandler N G, Mentink-Kane M M, Cheever A W, Wynn T A.
Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair.
J Immunol.
2003;
171
3655-3667
56
Novobrantseva T I, Majeau G R, Amatucci A et al..
Attenuated liver fibrosis in the absence of B cells.
J Clin Invest.
2005;
115
3072-3082
57
Safadi R, Ohta M, Alvarez C E et al..
Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes.
Gastroenterology.
2004;
127
870-882
58
Wyler D J.
Schistosomes, fibroblasts, and growth factors: how a worm causes liver scarring.
New Biol.
1991;
3
734-740
59
Chiaramonte M G, Donaldson D D, Cheever A W, Wynn T A.
An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response.
J Clin Invest.
1999;
104
777-785
60
Fichtner-Feigl S, Strober W, Kawakami K, Puri R K, Kitani A.
IL-13 signaling through the IL-13alpha(2) receptor is involved in induction of TGF-beta(1) production and fibrosis.
Nat Med.
2006;
12
99-106
61
Kremer M, Hines I N, Milton R J, Wheeler M D.
Favored T helper 1 response in a mouse model of hepatosteatosis is associated with enhanced T cell-mediated hepatitis.
Hepatology.
2006;
44
216-227
62
Hoffmann K F, McCarty T C, Segal D H et al..
Disease fingerprinting with cDNA microarrays reveals distinct gene expression profiles in lethal type 1 and type 2 cytokine-mediated inflammatory reactions.
FASEB J.
2001;
15
2545-2547
63
Tilg H, Moschen A R.
Adipocytokines: mediators linking adipose tissue, inflammation and immunity.
Nat Rev Immunol.
2006;
6
772-783
64
Ikejima K, Takei Y, Honda H et al..
Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat.
Gastroenterology.
2002;
122
1399-1410
65
Diehl A M, Li Z P, Lin H Z, Yang S Q.
Cytokines and the pathogenesis of non-alcoholic steatohepatitis.
Gut.
2005;
54
303-306
66
Emoto M, Kaufmann S H.
Liver NKT cells: an account of heterogeneity.
Trends Immunol.
2003;
24
364-369
67
Ajuebor M N, Aspinall A I, Zhou F et al..
Lack of chemokine receptor CCR5 promotes murine fulminant liver failure by preventing the apoptosis of activated CD1d-restricted NKT cells.
J Immunol.
2005;
174
8027-8037
68
Li Z, Lin H, Yang S, Diehl A M.
Murine leptin deficiency alters Kupffer cell production of cytokines that regulate the innate immune system.
Gastroenterology.
2002;
123
1304-1310
69
Elinav E, Pappo O, Sklair-Levy M et al..
Adoptive transfer of regulatory NKT lymphocytes ameliorates non-alcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping.
J Pathol.
2006;
209
121-128
70
Li Z, Oben J A, Yang S et al..
Norepinephrine regulates hepatic innate immune system in leptin-deficient mice with nonalcoholic steatohepatitis.
Hepatology.
2004;
40
434-441
71
Margalit M, Shalev Z, Pappo O et al..
Glucocerebroside ameliorates the metabolic syndrome in OB/OB mice.
J Pharmacol Exp Ther.
2006;
319
105-110
72
Sakaguchi S.
Naturally arising CD4 + regulatory T cells for immunologic self-tolerance and negative control of immune responses.
Annu Rev Immunol.
2004;
22
531-562
73
Hori S, Nomura T, Sakaguchi S.
Control of regulatory T cell development by the transcription factor Foxp3.
Science.
2003;
299
1057-1061
74
Maloy K J, Salaun L, Cahill R, Dougan G, Saunders N J, Powrie F.
CD4 + CD25 + T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms.
J Exp Med.
2003;
197
111-119
75
von Herrath M G, Harrison L C.
Antigen-induced regulatory T cells in autoimmunity.
Nat Rev Immunol.
2003;
3
223-232
76
Goddard S, Youster J, Morgan E, Adams D H.
Interleukin-10 secretion differentiates dendritic cells from human liver and skin.
Am J Pathol.
2004;
164
511-519
77
Eksteen B, Miles A, Curbishley S M et al..
Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10.
J Immunol.
2006;
177
593-603
78
Accapezzato D, Francavilla V, Paroli M et al..
Hepatic expansion of a virus-specific regulatory CD8( + ) T cell population in chronic hepatitis C virus infection.
J Clin Invest.
2004;
113
963-972
79
Bruder D, Westendorf A M, Geffers R et al..
CD4 T Lymphocyte-mediated lung disease: steady state between pathological and tolerogenic immune reactions.
Am J Respir Crit Care Med.
2004;
170
1145-1152
80
Westendorf A M, Templin M, Geffers R et al..
CD4 + T cell mediated intestinal immunity: chronic inflammation versus immune regulation.
Gut.
2005;
54
60-69
81
von Andrian U H, Mackay C R.
T-cell function and migration: two sides of the same coin.
N Engl J Med.
2000;
343
1020-1034
82
Agace W W.
Tissue-tropic effector T cells: generation and targeting opportunities.
Nat Rev Immunol.
2006;
6
682-692
83
Middleton J, Patterson A M, Gardner L, Schmutz C, Ashton B A.
Leukocyte extravasation: chemokine transport and presentation by the endothelium.
Blood.
2002;
100
3853-3860
84
Takasaki S, Hano H.
Three-dimensional observations of the human hepatic artery (arterial system in the liver).
J Hepatol.
2001;
34
455-466
85
Lalor P F, Lai W K, Curbishley S M, Shetty S, Adams D H.
Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivo.
World J Gastroenterol.
2006;
12
5429-5439
86
Elvevold K H, Nedredal G I, Revhaug A, Smedsrod B.
Scavenger properties of cultivated pig liver endothelial cells.
Comp Hepatol.
2004;
3
4
87
Steinhoff G, Behrend M, Schrader B, Duijvestijn A M, Wonigeit K.
Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia: lack of ELAM-1 and CD62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-1, ICAM-1, ICAM-2 and LFA-3.
Am J Pathol.
1993;
142
481-488
88
Scoazec J Y, Feldmann G.
In situ immunophenotyping study of endothelial cells of the human hepatic sinusoid: results and functional implications.
Hepatology.
1991;
14
789-797
89
Wong J, Johnston B, Lee S S et al..
A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature.
J Clin Invest.
1997;
99
2782-2790
90
Steinhoff G, Behrend M, Schrader B, Pichlmayr R.
Intercellular immune adhesion molecules in human liver transplants: overview on expression patterns of leukocyte receptor and ligand molecules.
Hepatology.
1993;
18
440-453
91
Adams D H, Hubscher S G, Fisher N C, Williams A, Robinson M.
Expression of E-selectin and E-selectin ligands in human liver inflammation.
Hepatology.
1996;
24
533-538
92
Jalkanen S, Salmi M.
Cell surface monoamine oxidases: enzymes in search of a function.
EMBO J.
2001;
20
3893-3901
93
McNab G, Reeves J L, Salmi M, Hubscher S, Jalkanen S, Adams D H.
Vascular adhesion protein 1 mediates binding of T cells to human hepatic endothelium.
Gastroenterology.
1996;
110
522-528
94
Yoong K F, McNab G, Hubscher S G, Adams D H.
Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma.
J Immunol.
1998;
160
3978-3988
95
Lalor P F, Edwards S, McNab G, Salmi M, Jalkanen S, Adams D H.
Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells.
J Immunol.
2002;
169
983-992
96
Ostermann G, Weber K S, Zernecke A, Schroder A, Weber C.
JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes.
Nat Immunol.
2002;
3
151-158
97
Chosay J G, Essani N A, Dunn C J, Jaeschke H.
Neutrophil margination and extravasation in sinusoids and venules of liver during endotoxin-induced injury.
Am J Physiol.
1997;
272
G1195-G1200
98
Smith D J, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S.
Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule.
J Exp Med.
1998;
188
17-27
99
Salmi M, Yegutkin G G, Lehvonen R, Koskinen K, Salminen T, Jalkanen S.
A cell surface amine oxidase directly controls lymphocyte migration.
Immunity.
2001;
14
265-276
100
Lalor P F, Sun P J, Weston C J, Martin-Santos A, Wakelam M J, Adams D H.
Activation of vascular adhesion protein-1 on liver endothelium results in an NF-kappaB-dependent increase in lymphocyte adhesion.
Hepatology.
2007;
45
465-474
101
Kurkijarvi R, Yegutkin G G, Gunson B K, Jalkanen S, Salmi M, Adams D H.
Circulating soluble vascular adhesion protein 1 accounts for the increased serum monoamine oxidase activity in chronic liver disease.
Gastroenterology.
2000;
119
1096-1103
102
O'Sullivan J, Unzeta M, Healy J, O'Sullivan M I, Davey G, Tipton K F.
Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do.
Neurotoxicology.
2004;
25
303-315
103
Yu P H, Lu L X, Fan H et al..
Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in lipopolysaccharide-induced pulmonary inflammation.
Am J Pathol.
2006;
168
718-726
104
Enrique-Tarancon G, Castan I, Morin N et al..
Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells.
Biochem J.
2000;
350
171-180
105
Stolen C M, Madanat R, Marti L et al..
Semicarbazide sensitive amine oxidase overexpression has dual consequences: insulin mimicry and diabetes-like complications.
FASEB J.
2004;
18
702-704
106
Adams D H, Burra P, Hubscher S G, Elias E, Newman W.
Endothelial activation and circulating vascular adhesion molecules in alcoholic liver disease.
Hepatology.
1994;
19
588-594
107
Jaeschke H.
Chemokines, neutrophils, and inflammatory liver injury.
Shock.
1996;
6
403-404
108
Kurkijarvi R, Adams D H, Leino R, Mottonen T, Jalkanen S, Salmi M.
Circulating form of human vascular adhesion protein-1 (VAP-1): increased serum levels in inflammatory liver diseases.
J Immunol.
1998;
161
1549-1557
109
Bonacchi A, Petrai I, Defranco R M et al..
The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C.
Gastroenterology.
2003;
125
1060-1076
110
Efsen E, Bonacchi A, Pastacaldi S et al..
Agonist-specific regulation of monocyte chemoattractant protein-1 expression by cyclooxygenase metabolites in hepatic stellate cells.
Hepatology.
2001;
33
713-721
111
Marra F, DeFranco R, Grappone C et al..
Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration.
Am J Pathol.
1998;
152
423-430
112
Morland C M, Fear J, McNab G, Joplin R, Adams D H.
Promotion of leukocyte transendothelial cell migration by chemokines derived from human biliary epithelial cells in vitro.
Proc Assoc Am Physicians.
1997;
109
372-382
113
Maher J J.
Rat hepatocytes and Kupffer cells interact to produce interleukin-8 (cinc) in the setting of ethanol.
Am J Physiol.
1995;
269
G518-G523
114
Shields P L, Morland C M, Salmon M, Qin S, Hubscher S G, Adams D H.
Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver.
J Immunol.
1999;
163
6236-6243
115
Narumi S, Tominaga Y, Tamaru M et al..
Expression of IFN-inducible protein-10 in chronic hepatitis.
J Immunol.
1997;
158
5536-5544
116
Afford S C, Fisher N C, Neil D A et al..
Distinct patterns of chemokine expression are associated with leukocyte recruitment in alcoholic hepatitis and alcoholic cirrhosis.
J Pathol.
1998;
186
82-89
117
Kugelmas M, Hill D B, Vivian B, Marsano L, McClain C J.
Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E.
Hepatology.
2003;
38
413-419
118
Abiru S, Migita K, Maeda Y et al..
Serum cytokine and soluble cytokine receptor levels in patients with non-alcoholic steatohepatitis.
Liver Int.
2006;
26
39-45
119
Haukeland J W, Damas J K, Konopski Z et al..
Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2.
J Hepatol.
2006;
44
1167-1174
120
Heydtmann M, Hardie D, Shields P L et al..
Detailed analysis of intrahepatic CD8 T cells in the normal and hepatitis C-infected liver reveals differences in specific populations of memory cells with distinct homing phenotypes.
J Immunol.
2006;
177
729-738
121
Debes G F, Arnold C N, Young A J et al..
Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues.
Nat Immunol.
2005;
6
889-894
122
Fisher N C, Neil D A, Williams A, Adams D H.
Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1alpha in alcoholic liver disease.
Gut.
1999;
45
416-420
123
Aleffi S, Petrai I, Bertolani C et al..
Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells.
Hepatology.
2005;
42
1339-1348
124
Zamara E, Galastri S, Aleffi S et al..
Prevention of severe toxic liver injury and oxidative stress in MCP-1-deficient mice.
J Hepatol.
2007;
46
230-238
125
Bertolani C, Sancho-Bru P, Failli P et al..
Resistin as an intrahepatic cytokine: overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells.
Am J Pathol.
2006;
169
2042-2053
126
Kanda H, Tateya S, Tamori Y et al..
MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity.
J Clin Invest.
2006;
116
1494-1505
127
Boisvert J, Kunkel E J, Campbell J J, Keeffe E B, Butcher E C, Greenberg H B.
Liver-infiltrating lymphocytes in end-stage hepatitis C virus: subsets, activation status, and chemokine receptor phenotypes.
J Hepatol.
2003;
38
67-75
128
Coulomb-L'Hermin A, Amara A, Schiff C et al..
Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells.
Proc Natl Acad Sci USA.
1999;
96
8585-8590
129
Heydtmann M, Lalor P F, Eksteen J A, Hubscher S G, Briskin M, Adams D H.
CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver.
J Immunol.
2005;
174
1055-1062
130
Sato T, Thorlacius H, Johnston B et al..
Role for CXCR6 in recruitment of activated CD8 + lymphocytes to inflamed liver.
J Immunol.
2005;
174
277-283
131
Goddard S, Williams A, Morland C et al..
Differential expression of chemokines and chemokine receptors shapes the inflammatory response in rejecting human liver transplants.
Transplantation.
2001;
72
1957-1967
132
Isse K, Harada K, Zen Y et al..
Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts.
Hepatology.
2005;
41
506-516
133
Curbishley S M, Eksteen B, Gladue R P, Lalor P, Adams D H.
CXCR3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under fluid flow.
Am J Pathol.
2005;
167
887-899
134
Leroy V, Vigan I, Mosnier J F et al..
Phenotypic and functional characterization of intrahepatic T lymphocytes during chronic hepatitis C.
Hepatology.
2003;
38
829-841
135
Bonacchi A, Romagnani P, Romanelli R G et al..
Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes.
J Biol Chem.
2001;
276
9945-9954
136
Dela Pena A, Leclercq I, Field J, George J, Jones B, Farrell G.
NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis.
Gastroenterology.
2005;
129
1663-1674
137
Boden G, She P, Mozzoli M et al..
Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver.
Diabetes.
2005;
54
3458-3465
138
Bird G LA, Sheron N, Goka A KJ, Alexander G JM, Williams R.
Increased plasma tumour necrosis factor in severe alcoholic hepatitis.
Ann Intern Med.
1990;
112
917-920
139
Khoruts A, Stahnke L, McClain C J, Logan G, Allen J I.
Circulating tumor necrosis factor, interleukin-1 and interleukin-6 concentrations in chronic alcoholic patients.
Hepatology.
1991;
13
267-276
140
Gebhard H H, Zysk S P, Schmitt-Sody M, Jansson V, Messmer K, Veihelmann A.
The effects of Celecoxib on inflammation and synovial microcirculation in murine antigen-induced arthritis.
Clin Exp Rheumatol.
2005;
23
63-70
141
Nanji A A, Miao L, Thomas P et al..
Enhanced cyclooxygenase-2 gene expression in alcoholic liver disease in the rat.
Gastroenterology.
1997;
112
943-951
142
Yu J, Ip E, Dela P A et al..
COX-2 induction in mice with experimental nutritional steatohepatitis: role as pro-inflammatory mediator.
Hepatology.
2006;
43
826-836
143
Tilg H, Diehl A M.
Cytokines in alcoholic and nonalcoholic steatohepatitis.
N Engl J Med.
2000;
343
1467-1476
144
Wigg A J, Roberts-Thomson I C, Dymock R B, McCarthy P J, Grose R H, Cummins A G.
The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis.
Gut.
2001;
48
206-211
145
Crespo J, Cayon A, Fernandez-Gil P et al..
Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients.
Hepatology.
2001;
34
1158-1163
146
Hui J M, Hodge A, Farrell G C, Kench J G, Kriketos A, George J.
Beyond insulin resistance in NASH: TNF-alpha or adiponectin'.
Hepatology.
2004;
40
46-54
147
Poniachik J, Csendes A, Diaz J C et al..
Increased production of IL-1alpha and TNF-alpha in lipopolysaccharide-stimulated blood from obese patients with non-alcoholic fatty liver disease.
Cytokine.
2006;
33
252-257
148
Tomita K, Tamiya G, Ando S et al..
Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice.
Gut.
2006;
55
415-424
149
Koppe S W, Sahai A, Malladi P, Whitington P F, Green R M.
Pentoxifylline attenuates steatohepatitis induced by the methionine choline deficient diet.
J Hepatol.
2004;
41
592-598
150
Satapathy S K, Garg S, Chauhan R et al..
Beneficial effects of tumor necrosis factor-alpha inhibition by pentoxifylline on clinical, biochemical, and metabolic parameters of patients with nonalcoholic steatohepatitis.
Am J Gastroenterol.
2004;
99
1946-1952
151
Adams L A, Zein C O, Angulo P, Lindor K D.
A pilot trial of pentoxifylline in nonalcoholic steatohepatitis.
Am J Gastroenterol.
2004;
99
2365-2368
152
Anty R, Bekri S, Luciani N et al..
The inflammatory C-reactive protein is increased in both liver and adipose tissue in severely obese patients independently from metabolic syndrome, type 2 diabetes, and NASH.
Am J Gastroenterol.
2006;
101
1824-1833
153
Fox-Robichaud A, Kubes P.
Molecular mechanisms of tumor necrosis factor alpha-stimulated leukocyte recruitment into the murine hepatic circulation.
Hepatology.
2000;
31
1123-1127
154
La Cava A, Matarese G.
The weight of leptin in immunity.
Nat Rev Immunol.
2004;
4
371-379
155
Verma S, Li S H, Wang C H et al..
Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction.
Circulation.
2003;
108
736-740
156
Parish C R.
The role of heparan sulphate in inflammation.
Nat Rev Immunol.
2006;
6
633-643
157
Shiratori Y, Takada H, Hikiba Y et al..
Production of chemotactic factor, interleukin-8, from hepatocytes exposed to ethanol.
Hepatology.
1993;
18
1477-1482
158
Armendariz-Borunda J, Seyer J M, Postlethwaite A E, Kang A H.
Kupffer cells from carbon tetrachloride-injured rat liver produce chemotactic factors for fibroblasts and monocytes: the role of tumour necrosis factor-alpha.
Hepatology.
1991;
14
895-900
159
Edwards S, Lalor P F, Nash G B, Rainger G E, Adams D H.
Lymphocyte traffic through sinusoidal endothelial cells is regulated by hepatocytes.
Hepatology.
2005;
41
451-459
160
Lieber C S.
Alcohol and the liver: metabolism of alcohol and its role in hepatic and extrahepatic diseases.
Mt Sinai J Med.
2000;
67
84-94
161
Lauterburg B H, Davies S, Mitchell J R.
Ethanol suppresses hepatic glutathione synthesis in rats in vivo.
J Pharmacol Exp Ther.
1984;
230
7-11
162
Lieber C S.
Role of oxidative stress and antioxidant therapy in alcoholic and nonalcoholic liver diseases.
Adv Pharmacol.
1997;
38
601-628
163
Lieber C S.
Biochemical factors in alcoholic liver disease.
Semin Liver Dis.
1993;
13
136-153
164
Kessova I, Cederbaum A I.
CYP2E1: biochemistry, toxicology, regulation and function in ethanol-induced liver injury.
Curr Mol Med.
2003;
3
509-518
165
Nanji A A.
Role of Kupffer cells in alcoholic hepatitis.
Alcohol.
2002;
27
13-15
166
Purohit V, Brenner D A.
Mechanisms of alcohol-induced hepatic fibrosis: a summary of the Ron Thurman Symposium.
Hepatology.
2006;
43
872-878
167
Yokoyama H, Fukuda M, Okamura Y et al..
Superoxide anion release into the hepatic sinusoid after an acute ethanol challenge and its attenuation by Kupffer cell depletion.
Alcohol Clin Exp Res.
1999;
23
71S-75S
168
Deaciuc I V, D'Souza N B, Spitzer J J.
Tumor necrosis factor-alpha cell-surface receptors of liver parenchymal and nonparenchymal cells during acute and chronic alcohol administration to rats.
Alcohol Clin Exp Res.
1995;
19
332-338
169
Saeed R W, Varma S, Peng T, Tracey K J, Sherry B, Metz C N.
Ethanol blocks leukocyte recruitment and endothelial cell activation in vivo and in vitro.
J Immunol.
2004;
173
6376-6383
170
Yamaguchi T, Dayton C, Shigematsu T et al..
Preconditioning with ethanol prevents postischemic leukocyte-endothelial cell adhesive interactions.
Am J Physiol Heart Circ Physiol.
2002;
283
H1019-H1030
171
Bautista A P.
Chronic alcohol intoxication induces hepatic injury through enhanced macrophage inflammatory protein-2 production and intercellular adhesion molecule-1 expression in the liver.
Hepatology.
1997;
25
335-342
172
Ohki E, Kato S, Ohgo H et al..
Effect of chronic ethanol feeding on endotoxin-induced hepatic injury: role of adhesion molecules on leukocytes and hepatic sinusoid.
Alcohol Clin Exp Res.
1998;
22
129S-132S
173
Thurman R G, Bradford B U, Iimuro Y et al..
The role of gut-derived bacterial toxins and free radicals in alcohol-induced liver injury.
J Gastroenterol Hepatol.
1998;
13(suppl)
S39-S50
174
Thurman II R G.
Alcoholic liver injury involves activation of Kupffer cells by endotoxin.
Am J Physiol.
1998;
275
G605-G611
175
John B, Klein I, Crispe I N.
Immune role of hepatic TLR-4 revealed by orthotopic mouse liver transplantation.
Hepatology.
2007;
45
178-186
176
Tuma D J, Thiele G M, Xu D, Klassen L W, Sorrell M F.
Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long-term ethanol administration.
Hepatology.
1996;
23
872-880
177
Rolla R, Vay D, Mottaran E et al..
Detection of circulating antibodies against malondialdehyde-acetaldehyde adducts in patients with alcohol-induced liver disease.
Hepatology.
2000;
31
878-884
178
Duryee M J, Klassen L W, Freeman T L, Willis M S, Tuma D J, Thiele G M.
Lipopolysaccharide is a cofactor for malondialdehyde-acetaldehyde adduct-mediated cytokine/chemokine release by rat sinusoidal liver endothelial and Kupffer cells.
Alcohol Clin Exp Res.
2004;
28
1931-1938
179
Nelson S, Bagby G, Bainton B G, Summer W R.
The effects of acute and chronic alcoholism on tumor necrosis factor and the inflammatory response.
J Infect Dis.
1989;
160
422-429
180
Maher J J.
Rat hepatocytes and Kupffer cells interact to produce interleukin-8 (CINC) in the setting of ethanol.
Am J Physiol.
1995;
269
G518-G523
181
Spitzer J A, Zheng M, Kolls J K, Vande S C, Spitzer J J.
Ethanol and LPS modulate NF-kappaB activation, inducible NO synthase and COX-2 gene expression in rat liver cells in vivo.
Front Biosci.
2002;
7
a99-a108
182
Bautista A P.
Chronic alcohol intoxication primes Kupffer cells and endothelial cells for enhanced CC-chemokine production and concomitantly suppresses phagocytosis and chemotaxis.
Front Biosci.
2002;
7
a117-a125
183
Paik Y H, Schwabe R F, Bataller R, Russo M P, Jobin C, Brenner D A.
Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells.
Hepatology.
2003;
37
1043-1055
184
Roman J, Colell A, Blasco C et al..
Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: effect on transcription factors AP-1 and NF-kappaB.
Hepatology.
1999;
30
1473-1480
185
Aroor A R, Shukla S D.
MAP kinase signaling in diverse effects of ethanol.
Life Sci.
2004;
74
2339-2364
186
Cao Q, Mak K M, Lieber C S.
Cytochrome P4502E1 primes macrophages to increase TNF-alpha production in response to lipopolysaccharide.
Am J Physiol Gastrointest Liver Physiol.
2005;
289
G95-G107
187
Wheeler M D.
Endotoxin and Kupffer cell activation in alcoholic liver disease.
Alcohol Res Health.
2003;
27
300-306
188
Yamashina S, Takei Y, Ikejima K, Enomoto N, Kitamura T, Sato N.
Ethanol-induced sensitization to endotoxin in Kupffer cells is dependent upon oxidative stress.
Alcohol Clin Exp Res.
2005;
29
246S-250S
189
Jokelainen K, Thomas P, Lindros K, Nanji A A.
Acetaldehyde inhibits NF-kappaB activation through IkappaBalpha preservation in rat Kupffer cells.
Biochem Biophys Res Commun.
1998;
253
834-836
190
Roman J, Colell A, Blasco C et al..
Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: effect on transcription factors AP-1 and NF-kappaB.
Hepatology.
1999;
30
1473-1480
191
Koteish A, Yang S, Lin H, Huang X, Diehl A M.
Chronic ethanol exposure potentiates lipopolysaccharide liver injury despite inhibiting Jun N-terminal kinase and caspase 3 activation.
J Biol Chem.
2002;
277
13037-13044
192
Altura B M, Gebrewold A.
Pyrrolidine dithiocarbamate attenuates alcohol-induced leukocyte-endothelial cell interaction and cerebral vascular damage in rats: possible role of activation of transcription factor NF-kappaB in alcohol brain pathology.
Alcohol.
1998;
16
25-28
193
Nanji A A, Jokelainen K, Fotouhinia M et al..
Increased severity of alcoholic liver injury in female rats: role of oxidative stress, endotoxin, and chemokines.
Am J Physiol Gastrointest Liver Physiol.
2001;
281
G1348-G1356
194
Rot A, von Andrian U.
Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells.
Annu Rev Immunol.
2004;
22
891-928
David H AdamsM.D.
The Liver Research Group, Institute for Biomedical Science, The University of Birmingham Medical School
Edgbaston, Birmingham B15 2TT, United Kingdom