Zusamenfassung
Die Frühdiagnose des kolorektalen Karzinoms respektive der zum Malignom führenden Vorstufen ist der Schlüssel zur kurativen Therapie dieser Erkrankung. Trotz Screening-Methoden werden über zwei Drittel aller kolorektalen Karzinome erst im Stadium III und IV diagnostiziert und bedingen so die schlechte Prognose. Die Proteomforschung („PROTEins expressed by a genOME”) ist ein neues Feld der Wissenschaft, in dem Zusammensetzung, Struktur, Funktion und Interaktion von Polypeptiden untersucht werden, die als potenzielle Biomarker zur Früherkennung fungieren können. Schon heute sind Proteomanalysen auf Basis der zweidimensionalen Gelelektrophorese (2-DE), der Massenspektrometrie (MALDI) und der SELDI-Technologie in der Lage, mit hoher Sensitivität und Spezifität den Tumorerkrankten vom Gesunden zu unterscheiden. Die Identifikation tumorentitätsspezifischer Markerproteine wird es zukünftig möglich machen, personalisierte Behandlungsstrategien zu entwickeln und birgt somit das Potenzial, die Überlebensraten von Patienten mit kolorektalen Karzinomen deutlich zu beeinflussen. Es ist vorhersehbar, dass in naher Zukunft die klinische Medizin die Ergebnisse der Proteom- und Genomforschung in die Routine integrieren wird. Bei diesem Transfer von „bench to bedside” wird dem Chirurgen eine tragende Rolle zukommen.
Abstract
Detection of colorectal cancer at an early stage or even before it occurs, is critical when curative treatment is intented. Despite all possibilties to screen for colorectal cancer, more than two thirds are diagnosed at advanced stages (UICC III and IV) of disease. This determines the growing demand for efficient diagnostic and prognostic markers. Proteomic research (“PROTEins expressed by a genOME”) approchaches issues like protein abundance, posttranslational polypeptide modification and protein-protein interaction as well as functional and dynamic processes within the cell and can therefore lead to biomarker discovery for early disease detection. Already now, proteomics based on 2-dimensional gel electrophoresis, masspectrometry (MALDI) and SELDI-technology, can distinguish a healty from the tumor patient with high sensitivity and specificity. The identification of tumor specific proteins will enable us to develop patient tailored treatment strategies, that have the potential to improve the survival of patients suffering from colorectal cancer. It can be foreseen that clinical medicine will integrate the results of proteome and genome research into daily routine. Within this transfer from “bench to bedside” the surgeon will play a pivotal role.
Schlüsselwörter
Proteomics - kolorektales Karzinom - Tumormarker
Key words
proteomics - colorectal cancer - biomarker
Literatur
1
Parkin D M, Pisani P, Ferlay J.
Global cancer statistics.
CA Cancer J Clin.
1999;
49
31
33-64
2
Fleischer D E, Goldberg S B, Browning T H, Cooper J N, Friedman E, Goldner F H, Keeffe E B, Smith L E.
Detection and surveillance of colorectal cancer.
Jama.
1989;
261
580-585
3
Mak T, Lalloo F, Evans D G, Hill J.
Molecular stool screening for colorectal cancer.
Br J Surg.
2004;
91
790-800
4
Fearnhead N S, Britton M P, Bodmer W F.
The ABC of APC.
Hum Mol Genet.
2001;
10
721-733
5
Howe J R, Guillem J G.
The genetics of colorectal cancer.
Surg Clin North Am.
1997;
77
175-195
6
Andreyev H J, Norman A R, Cunningham D, Oates J R, Clarke P A.
Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study.
J Natl Cancer Inst.
1998;
90
675-684
7
Sidransky D, Tokino T, Hamilton S R, Kinzler K W, Levin B, Frost P, Vogelstein B.
Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors.
Science.
1992;
256
102-105
8
Vogelstein B, Fearon E R, Hamilton S R, Kern S E, Preisinger A C, Leppert M, Nakamura Y, White R, Smits A M, Bos J L.
Genetic alterations during colorectal-tumor development.
N Engl J Med.
1988;
319
525-532
9
Goh H S, Yao J, Smith D R.
p 53 point mutation and survival in colorectal cancer patients.
Cancer Res.
1995;
55
5217-5221
10
Hamelin R, Laurent-Puig P, Olschwang S, Jego N, Asselain B, Remvikos Y, Girodet J, Salmon R J, Thomas G.
Association of p 53 mutations with short survival in colorectal cancer.
Gastroenterology.
1994;
106
42-48
11
Kressner U, Inganas M, Byding S, Blikstad I, Pahlman L, Glimelius B, Lindmark G.
Prognostic value of p 53 genetic changes in colorectal cancer.
J Clin Oncol.
1999;
17
593-599
12
Tortola S, Marcuello E, Gonzalez I, Reyes G, Arribas R, Aiza G, Sancho F J, Peinado M A, Capella G.
p 53 and K-ras gene mutations correlate with tumor aggressiveness but are not of routine prognostic value in colorectal cancer.
J Clin Oncol.
1999;
17
1375-1381
13
Ahnen D J, Feigl P, Quan G, Fenoglio-Preiser C, Lovato L C, Bunn Jr P A, Stemmerman G, Wells J D, Macdonald J S, Meyskens Jr F L.
Ki-ras mutation and p 53 overexpression predict the clinical behavior of colorectal cancer: a Southwest Oncology Group study.
Cancer Res.
1998;
58
1149-1158
14
Watanabe T, Wu T T, Catalano P J, Ueki T, Satriano R, Haller D G, Benson 3rd
A B, Hamilton S R.
Molecular predictors of survival after adjuvant chemotherapy for colon cancer.
N Engl J Med.
2001;
344
1196-1206
15
Carpelan-Holmstrom M, Louhimo J, Stenman U H, Alfthan H, Haglund C.
CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers.
Anticancer Res.
2002;
22
2311-2316
16
Chapman M A, Buckley D, Henson D B, Armitage N C.
Preoperative carcinoembryonic antigen is related to tumour stage and long-term survival in colorectal cancer.
Br J Cancer.
1998;
78
1346-1349
17
Harrison L E, Guillem J G, Paty P, Cohen A M.
Preoperative carcinoembryonic antigen predicts outcomes in node-negative colon cancer patients: a multivariate analysis of 572 patients.
J Am Coll Surg.
1997;
185
55-59
18
Korenaga D, Saeki H, Mawatari K, Orita H, Maekawa S, Ikeda T, Sugimachi K.
Serum carcinoembryonic antigen concentration doubling time correlates with tumor biology and life expectancy in patients with recurrent gastrointestinal carcinoma.
Arch Surg.
1997;
132
188-194
19
Moertel C G, Fleming T R, Macdonald J S, Haller D G, Laurie J A, Tangen C.
An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer.
Jama.
1993;
270
943-947
20
Slentz K, Senagore A, Hibbert J, Mazier W P, Talbott T M.
Can preoperative and postoperative CEA predict survival after colon cancer resection?.
Am Surg.
1994;
60
528-531
, discussion 531-522
21
Glover C, Douse P, Kane P, Karani J, Meire H, Mohammadtaghi S, Allen-Mersh T G.
Accuracy of investigations for asymptomatic colorectal liver metastases.
Dis Colon Rectum.
2002;
45
476-484
22
Mori M, Tomoda H, Ishida T, Kido A, Shimono R, Matsushima T, Kuwano H, Sugimachi K.
Surgical resection of pulmonary metastases from colorectal adenocarcinoma. Special reference to repeated pulmonary resections.
Arch Surg.
1991;
126
1297-1301
, discussion 1302
23
Crawford N P, Colliver D W, Galandiuk S.
Tumor markers and colorectal cancer: utility in management.
J Surg Oncol.
2003;
84
239-248
24
Banks R E, Dunn M J, Forbes M A, Stanley A, Pappin D, Naven T, Gough M, Harnden P, Selby P J.
The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis - preliminary findings.
Electrophoresis.
1999;
20
689-700
25
Craven R A, Banks R E.
Laser capture microdissection and proteomics: possibilities and limitation.
Proteomics.
2001;
1
1200-1204
26
Wulfkuhle J D, McLean K C, Paweletz C P, Sgroi D C, Trock B J, Steeg P S, Petricoin 3rd
E F.
New approaches to proteomic analysis of breast cancer.
Proteomics.
2001;
1
1205-1215
27
Alaiya A, Roblick U, Egevad L, Carlsson A, Franzen B, Volz D, Huwendiek S, Linder S, Auer G.
Polypeptide expression in prostate hyperplasia and prostate adenocarcinoma.
Anal Cell Pathol.
2000;
21
1-9
28
Alaiya A A, Franzen B, Fujioka K, Moberger B, Schedvins K, Silfversvard C, Linder S, Auer G.
Phenotypic analysis of ovarian carcinoma: polypeptide expression in benign, borderline and malignant tumors.
Int J Cancer.
1997;
73
678-683
29
Alaiya A A, Franzen B, Hagman A, Silfversward C, Moberger B, Linder S, Auer G.
Classification of human ovarian tumors using multivariate data analysis of polypeptide expression patterns.
Int J Cancer.
2000;
86
731-736
30
Franzen B, Auer G, Alaiya A A, Eriksson E, Uryu K, Hirano T, Okuzawa K, Kato H, Linder S.
Assessment of homogeneity in polypeptide expression in breast carcinomas shows widely variable expression in highly malignant tumors.
Int J Cancer.
1996;
69
408-414
31
Franzen B, Linder S, Alaiya A A, Eriksson E, Uruy K, Hirano T, Okuzawa K, Auer G.
Analysis of polypeptide expression in benign and malignant human breast lesions: down-regulation of cytokeratins.
Br J Cancer.
1996;
74
1632-1638
32
Franzen B, Linder S, Okuzawa K, Kato H, Auer G.
Nonenzymatic extraction of cells from clinical tumor material for analysis of gene expression by two-dimensional polyacrylamide gel electrophoresis.
Electrophoresis.
1993;
14
1045-1053
33
Bjellqvist B, Ek K, Righetti P G, Gianazza E, Gorg A, Westermeier R, Postel W.
Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications.
J Biochem Biophys Methods.
1982;
6
317-339
34
Gorg A, Boguth G, Obermaier C, Posch A, Weiss W.
Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems.
Electrophoresis.
1995;
16
1079-1086
35
Gorg A, Obermaier C, Boguth G, Csordas A, Diaz J J, Madjar J J.
Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins.
Electrophoresis.
1997;
18
328-337
36
Gorg A, Postel W, Gunther S.
The current state of two-dimensional electrophoresis with immobilized pH gradients.
Electrophoresis.
1988;
9
531-546
37
Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M.
Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology.
Proteomics.
2001;
1
377-396
38
Unlu M, Morgan M E, Minden J S.
Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.
Electrophoresis.
1997;
18
2071-2077
39
Conrads T P, Fusaro V A, Ross S, Johann D, Rajapakse V, Hitt B A, Steinberg S M, Kohn E C, Fishman D A, Whitely G, Barrett J C, Liotta L A, Petricoin 3rd
E F, Veenstra T D.
High-resolution serum proteomic features for ovarian cancer detection.
Endocr Relat Cancer.
2004;
11
163-178
40
Habermann J K, Roblick U J, Luke B T, Prieto D A, Finlay W J, Podust V N, Roman J M, Oevermann E, Schiedeck T, Homann N, Duchrow M, Conrads T P, Veenstra T D, Burt S K, Bruch H P, Auer G, Ried T.
Increased serum levels of complement C3a anaphylatoxin indicate the presence of colorectal tumors.
Gastroenterology.
2006;
131
1020-1029
, quiz 1284
41
Li J, Zhang Z, Rosenzweig J, Wang Y Y, Chan D W.
Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer.
Clin Chem.
2002;
48
1296-1304
42
Ornstein D K, Rayford W, Fusaro V A, Conrads T P, Ross S J, Hitt B A, Wiggins W W, Veenstra T D, Liotta L A, Petricoin 3rd
E F.
Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml.
J Urol.
2004;
172 (4 Pt 1)
1302-1305
43
Petricoin E F, Ardekani A M, Hitt B A, Levine P J, Fusaro V A, Steinberg S M, Mills G B, Simone C, Fishman D A, Kohn E C, Liotta L A.
Use of proteomic patterns in serum to identify ovarian cancer.
Lancet.
2002;
359
572-577
44
Petricoin E F, Ornstein D K, Liotta L A.
Clinical proteomics: Applications for prostate cancer biomarker discovery and detection.
Urol Oncol.
2004;
22
322-328
45
Petricoin 3rd
E F, Ornstein D K, Paweletz C P, Ardekani A, Hackett P S, Hitt B A, Velassco A, Trucco C, Wiegand L, Wood K, Simone C B, Levine P J, Linehan W M, Emmert-Buck M R, Steinberg S M, Kohn E C, Liotta L A.
Serum proteomic patterns for detection of prostate cancer.
J Natl Cancer Inst.
2002;
94
1576-1578
46
Jungblut P R, Zimny-Arndt U, Zeindl-Eberhart E, Stulik J, Koupilova K, Pleissner K P, Otto A, Muller E C, Sokolowska-Kohler W, Grabher G, Stoffler G.
Proteomics in human disease: cancer, heart and infectious diseases.
Electrophoresis.
1999;
20
2100-2110
47
Stulik J, Koupilova K, Osterreicher J, Knizek J, Macela A, Bures J, Jandik P, Langr F, Dedic K, Jungblut P R.
Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma.
Electrophoresis.
1999;
20
3638-3646
48
Stulik J, Osterreicher J, Koupilova K, Knizek J, Macela A, Bures J, Jandik P, Langr F, Dedic K, Jungblut P R.
The analysis of S 100 A 9 and S 100 A 8 expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma: the S 100 A 9 and S 100 A 8 positive cells underlie and invade tumor mass.
Electrophoresis.
1999;
20
1047-1054
49
Roseth A G, Kristinsson J, Fagerhol M K, Schjonsby H, Aadland E, Nygaard K, Roald B.
Faecal calprotectin: a novel test for the diagnosis of colorectal cancer?.
Scand J Gastroenterol.
1993;
28
1073-1076
50
Roblick U J, Hirschberg D, Habermann J K, Palmberg C, Becker S, Kruger S, Gustafsson M, Bruch H P, Franzen B, Ried T, Bergmann T, Auer G, Jornvall H.
Sequential proteome alterations during genesis and progression of colon cancer.
Cell Mol Life Sci.
2004;
61
1246-1255
51
Stulik J, Hernychova L, Porkertova S, Knizek J, Macela A, Bures J, Jandik P, Langridge J I, Jungblut P R.
Proteome study of colorectal carcinogenesis.
Electrophoresis.
2001;
22
3019-3025
52
Roblick U J, Lenander C, Bader F G, Zimmermann K, Becker S, Ost A, Bruch H P, Franzen B, Auer G, Habermann J K.
Undifferentiated pelvic adenocarcinomas: Diagnostik potential of protein profiling and multivariate analysis.
Am J Surg Path.
2007;
, submitted
53
Nishizuka S, Chen S T, Gwadry F G, Alexander J, Major S M, Scherf U, Reinhold W C, Waltham M, Charboneau L, Young L, Bussey K J, Kim S, Lababidi S, Lee J K, Pittaluga S, Scudiero D A, Sausville E A, Munson P J, Petricoin 3rd
E F, Liotta L A, Hewitt S M, Raffeld M, Weinstein J N.
Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling.
Cancer Res.
2003;
63
5243-5250
54
Friedman D B, Hill S, Keller J W, Merchant N B, Levy S E, Coffey R J, Caprioli R M.
Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry.
Proteomics.
2004;
4
793-811
55
Alfonso P, Nunez A, Madoz-Gurpide J, Lombardia L, Sanchez L, Casal J I.
Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis.
Proteomics.
2005;
5
2602-2611
56
Allal A S, Kahne T, Reverdin A K, Lippert H, Schlegel W, Reymond M A.
Radioresistance-related proteins in rectal cancer.
Proteomics.
2004;
4
2261-2269
57
Adam B L, Qu Y, Davis J W, Ward M D, Clements M A, Cazares L H, Semmes O J, Schellhammer P F, Yasui Y, Feng Z, Wright G LJr.
Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men.
Cancer Res.
2002;
62
3609-3614
58
Becker S, Cazares L H, Watson P, Lynch H, Semmes O J, Drake R R, Laronga C.
Surfaced-enhanced laser desorption / ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer.
Ann Surg Oncol.
2004;
11
907-914
59
Engwegen J Y, Gast M C, Schellens J H, Beijnen J H.
Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry.
Trends Pharmacol Sci.
2006;
27
251-259
60
Heike Y, Hosokawa M, Osumi S, Fujii D, Aogi K, Takigawa N, Ida M, Tajiri H, Eguchi K, Shiwa M, Wakatabe R, Arikuni H, Takaue Y, Takashima S.
Identification of serum proteins related to adverse effects induced by docetaxel infusion from protein expression profiles of serum using SELDI ProteinChip system.
Anticancer Res.
2005;
25
1197-1203
61
Mathelin C, Tomasetto C, Rio M C, Chenard M P, Brettes J P, Guyonnet J L.
Improvement in intramammary sentinel lymph node removal using a novel prototype hand held probe during breast conservative surgery.
Breast Cancer Res Treat.
2005;
89
305-308
62
Qu Y, Adam B L, Yasui Y, Ward M D, Cazares L H, Schellhammer P F, Feng Z, Semmes O J, Wright Jr G L.
Boosted decision tree analysis of surface-enhanced laser desorption / ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients.
Clin Chem.
2002;
48
1835-1843
63
Yu J K, Chen Y D, Zheng S.
An integrated approach to the detection of colorectal cancer utilizing proteomics and bioinformatics.
World J Gastroenterol.
2004;
10
3127-3131
64
Chen R, Rabinovitch P S, Crispin D A, Emond M J, Bronner M P, Brentnall T A.
The initiation of colon cancer in a chronic inflammatory setting.
Carcinogenesis.
2005;
26
1513-1519
65
Melle C, Ernst G, Schimmel B, Bleul A, Thieme H, Kaufmann R, Mothes H, Settmacher U, Claussen U, Halbhuber K J, Eggeling F von.
Discovery and identification of alpha-defensins as low abundant, tumor-derived serum markers in colorectal cancer.
Gastroenterology.
2005;
129
66-73
66
Albrethsen J, Bogebo R, Gammeltoft S, Olsen J, Winther B, Raskov H.
Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study.
BMC Cancer.
2005;
5
8
67
Ward D G, Suggett N, Cheng Y, Wei W, Johnson H, Billingham L J, Ismail T, Wakelam M J, Johnson P J, Martin A.
Identification of serum biomarkers for colon cancer by proteomic analysis.
Br J Cancer.
2006;
94
1898-1905
Dr. Dr. med. U. J. Roblick
Klinik für Chirurgie · Universitätsklinikum Schleswig-Holstein · Campus Lübeck
Ratzeburgerallee 160
23538 Lübeck
Deutschland
Phone: +49/4 51/5 00 63 37
Fax: +49/4 51/5 00 20 69
Email: DrDr.UJRoblick@t-online.de