Planta Med 2007; 73(10): 1074-1080
DOI: 10.1055/s-2007-981561
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Antifungal Activity of Zuccagnia punctata Cav.: Evidence for the Mechanism of Action

Laura Svetaz1 , María Belén Agüero2 , Sandra Alvarez1 , Lorena Luna2 , Gabriela Feresin2 , Marcos Derita1 , Alejandro Tapia2 [*] , Susana Zacchino1 [*]
  • 1Farmacognosia, Facultad Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional Rosario, Rosario, Argentina
  • 2Instituto Biotecnología-Instituto Ciencias Básicas, Universidad Nacional San Juan, San Juan, Argentina
Weitere Informationen

Publikationsverlauf

Received: January 20, 2007 Revised: May 31, 2007

Accepted: June 4, 2007

Publikationsdatum:
12. Juli 2007 (online)

Abstract

Petroleum ether and dichloromethane extracts of fruits, aerial parts and exudate of Zuccagnia punctata Cav. (Fabaceae) showed moderate antifungal activities against the yeasts C. albicans, S. cerevisiae and C. neoformans (MICs: 62.5 - 250 μg/mL) and very strong antifungal activities against the dermatophytes M. gypseum, T. rubrum and T. mentagrophytes (MICs: 8 - 16 μg/mL) thus supporting the ethnopharmacological use of this plant. Antifungal activity-directed fractionation of active extracts by using bioautography led to the isolation of 2′,4′-dihydroxy-3′-methoxychalcone (1) and 2′,4′-dihydroxychalcone (2) as the compounds responsible for the antifungal activity. Second-order studies included MIC80, MIC50 and MFC of both chalcones in an extended panel of clinical isolates of the most sensitive fungi, and also comprised a series of targeted assays. They showed that the most active chalcone 2 is fungicidal rather than fungistatic, does not disrupt the fungal membranes up to 4 × MFC and does not act by inhibiting the fungal cell wall. So, 2′,4′-dihydroxychalcone would act by a different mechanism of action than the antifungal drugs in current clinical use, such as amphotericin B, azoles or echinocandins, and thus appears to be very promising as a novel antifungal agent.

Abbreviations

ADCM: aerial part dichloromethane extract

AMeOH: aerial part methanol extract

APE: aerial part petrol extract

CC: column chromatography

DMSO: dimethyl sulfoxide

EDCM: exudate dichloromethane extract

FDCM: fruit dichloromethane extract

FMeOH: fruit methanol extract

FPE: fruit petrol extract

MFC: minimum fungicidal concentration

MIC: minimum inhibitory concentration

MOPS: 3-(N-morpholino)propanesulfonic acid

RDCM: root dichloromethane extract

RMeOH: root methanol extract

RPE: root petrol extract

RPMI-1640: Roswell Park Memorial Institute culture medium

SDA: Sabouraud-dextrose agar

References

  • 1 Kontoyiannis D, Mantadakis E, Samonis G. Systemic mycoses in the immunocompromised host: an update in antifungal therapy.  J Hosp Infect. 2003;  53 243-58.
  • 2 Patterson T. Advances and challenges in management of invasive mycoses.  Lancet. 2005;  366 1013-5.
  • 3 Ablordeppey S, Fan P, Ablordeppey J, Mardenborough L. Systemic antifungal agents against AIDS-related opportunistic infections: current status and emerging drugs in development.  Curr Med Chem. 1999;  6 1151-95.
  • 4 Odds F, Motyl M, Andrade R, Bille J, Cantón E, Cuenca-Estrella M. et al . Interlaboratory comparison of results of susceptibility testing with caspofungin against Candida and Aspergillus species.  J Clin Microbiol. 2004;  42 3475-82.
  • 5 Kiesling R. Flora de San Juan, Vol. 1. Buenos Aires: Vazquez Manzini; 1994: 286. 
  • 6 Burkart A. Las leguminosas argentinas silvestres y cultivadas. 2a Ed Buenos Aires; ACME Agency 1952: 184-5
  • 7 Del Vitto L, Petenatti E, Petenatti M. Recursos herbolarios de San Luis (República Argentina). Primera parte: plantas nativas.  Multequina. 1997;  6 49-66.
  • 8 Alcaraz L E, Blanco S E, Puig O N, Tomás F, Ferreti F H. Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains.  J Theor Biol. 2000;  205 231-40.
  • 9 Zampini I C, Vattuone M A, Isla M I. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.  J Ethnopharmacol. 2005;  102 450-6.
  • 10 Quiroga E N, Sampietro A R, Vattuone M A. Screening for antifungal activities of selected medicinal plants.  J Ethnopharmacol. 2001;  74 89-96.
  • 11 Svetaz L, Tapia A, López S N, Furlán R LE, Petenatti E, Pioli R. et al . Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi.  J Agric Food Chem. 2004;  52 3297-300.
  • 12 Pederiva R, Giordano O. 3,7-Dihydroxy-8-methoxyflavone from Zuccagnia punctata .  Phytochemistry. 1984;  23 1340-1.
  • 13 Pederiva R, Kavka J, D’Arcangelo A. Chalconas y flavanonas aisladas de Larrea nítida Cav.  An Asoc Quím Argentina. 1975;  63 85-90.
  • 14 NCCLS . National Committee for Clinical and Laboratory Standards. Method M-27-A2 for yeasts. 2002: Vol. 22(15); 1 - 29.  NCCLS and method M-38A for filamentous fungi.. 2002;  22(16) 1-27.
  • 15 Wright L R, Scott E M, Gorman S P. The sensitivity of mycelium, arthrospores, and microconidia of Trichophyton mentagrophytes to imidazoles determined by in vitro tests.  J Antimicrob Chemother. 1983;  12 317-27.
  • 16 Rahalison L, Hamburger M, Hostettmann K, Monod M, Frenk E. A bioautographic agar overlay method for the detection of antifungal compounds from higher plants.  Phytochem Anal. 1991;  2 199-203.
  • 17 Saxena G, Farmer S, Towers G HN, Hancock R EW. Use of specific dyes in the detection of antimicrobial compounds from crude plant extracts using a thin layer chromatography agar overlay technique.  Phytochem Anal. 1995;  6 125-9.
  • 18 Frost D, Brandt K, Cugier D, Goldman R. A whole cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly.  J Antibiot. 1995;  48 306-10.
  • 19 Carson C F, Mee B J, Riley T V. Mechanism of action of Melaleuca alternifolia (Tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage and salt tolerance assays and electron microscopy.  Antimicrob Agents Chemother. 2002;  46 1914-20.
  • 20 Lunde C, Kubo I. Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae .  Antimicrob Agents Chemother. 2000;  44 1943-53.
  • 21 Ernst E, Roling E, Petzold R, Keele D, Klepser M. In vitro activity of micafungin (FK-463) against Candida spp.: microdilution, time-kill, and postantifungal-effect studies.  Antimicrob Agents Chemother. 2002;  46 3846-53.
  • 22 Almirante B, Rodríguez D, Park B, Cuenca-Estrella M, Planes A, Amela L. et al . Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, Barcelona, Spain, 2002 - 2003.  J Clin Microbiol. 2005;  43 1829-35.
  • 23 Singh N. Treatment of opportunistic mycoses: how long is long enough?.  Lancet Infect Dis. 2003;  3 703-8.
  • 24 Weitzmann I, Summerbell R. The dermatophytes.  Clin Microb Rev. 1995;  8 240-59.
  • 25 López S, Castelli M V, Zacchino S A, Domínguez J, Lobo G, Charris J. et al . In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall.  Bioorg Med Chem. 2001;  9 1999-2013.
  • 26 Groll A, De Lucca A, Walsh T. Emerging targets for the development of novel antifungal therapeutics.  Trends Microbiol. 1998;  6 117-23.
  • 27 Di Domenico B. Novel antifungal drugs.  Curr Opin Microbiol. 1999;  2 509-15.

1 This work was co-directed by both authors

Susana Zacchino

Farmacognosia

Facultad Ciencias Bioquímicas y Farmacéuticas

Suipacha 531

2000 Rosario

Argentina

Telefon: +54-341-437-5315

Fax: +54-341-437-5315

eMail: szaabgil@citynet.net.ar

>