Semin Thromb Hemost 2007; 33(5): 453-465
DOI: 10.1055/s-2007-982076
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Enzymatic Synthesis of Glycosaminoglycan Heparin

Robert J. Linhardt1 , Jonathan S. Dordick2 , Paul L. Deangelis2 , Jian Liu1
  • 1Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
  • 2Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
  • 3Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
Further Information

Publication History

Publication Date:
16 July 2007 (online)

ABSTRACT

Heparin and its low molecular weight heparin derivatives, widely used as clinical anticoagulants, are acidic polysaccharide members of a family of biomacromolecules called glycosaminoglycans (GAGs). Heparin and the related heparan sulfate are biosynthesized in the Golgi apparatus of eukaryotic cells. Heparin is a polycomponent drug that currently is prepared for clinical use by extraction from animal tissues. A heparin pentasaccharide, fondaparinux, has also been prepared through chemical synthesis for use as a homogenous anticoagulant drug. Recent enabling technologies suggest that it may now be possible to synthesize heparin and its derivatives enzymatically. Moreover, new technologies including advances in synthetic carbohydrate synthesis, enzyme-based GAG synthesis, micro- and nano-display of GAGs, rapid on-line structural analysis, and microarray/microfluidic technologies might be applied to the enzymatic synthesis of heparins with defined structures and exhibiting selected activities. The advent of these new technologies also makes it possible to consider the construction of an artificial Golgi to increase our understanding of the cellular control of GAG biosyntheses in this organelle.

REFERENCES

  • 1 Linhardt R J. Heparin: an important drug enters its seventh decade.  Chem Ind. 1991;  2 45-50
  • 2 Linhardt R J, Gunay N S. Production and chemical processing of low molecular weight heparins.  Semin Thromb Hemost. 1999;  25 5-14
  • 3 Casu B. Structure and biological activity of heparin.  Adv Carbohydr Chem Biochem. 1985;  43 51-134
  • 4 Munoz E M, Linhardt R J. Heparin binding domains in vascular biology.  Arterioscler Thromb Vascular Biol. 2004;  24 1549-1557
  • 5 Fareed J, Jeske W, Hoppensteadt D, Clarizio R, Walgenga J M. Low molecular weight heparins: pharmacologic profile and product differentiation.  Am J Cardiol. 1998;  82 3L-10L
  • 6 Linhardt R J, Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity.  J Med Chem. 2003;  46 2551-2564
  • 7 Warkentin T E, Cook D J. Heparin, low molecular weight heparin, and heparin-induced thrombocytopenia in the ICU.  Crit Care Clin. 2005;  21 513-529
  • 8 Vuillemenot A, Schiele F, Meneveau N et al.. Efficacy of a synthetic pentasaccharide, a pure factor Xa inhibitor, as an antithrombotic agent-a pilot study in the setting of coronary angioplasty.  Thromb Haemost. 1999;  81 214-220
  • 9 Sinaӱ P, Jacquinet J-C. Total synthesis of a heparin pentasaccharide fragment having high affinity for antithrombin III.  Carbohydr Res. 1984;  132 C5-C9
  • 10 Efird L E, Kockler D R. Fondaparinux for thromboembolic treatment and prophylaxis of heparin-induced thrombocytopenia.  Ann Pharmacother. 2006;  40 1383-1387
  • 11 Avci F Y, Karst N A, Linhardt R J. Synthetic oligosaccharides as heparin-mimetics displaying anticoagulant properties.  Curr Pharm Des. 2003;  9 2323-2335
  • 12 Lindahl U, Feingold D S, Roden L. Biosynthesis of heparin.  Trends Biochem Sci. 1986;  11 221-225
  • 13 Griffin C C, Linhardt R J, VanGorp C L et al.. Isolation and characterization of heparan sulfate from crude porcine intestinal mucosa peptidoglycan heparin.  Carbohydr Res. 1995;  276 183-197
  • 14 Marcum J A, Rosenberg R D. Anticoagulantly active heparan sulfate proteoglycan and the vascular endothelium.  Semin Thromb Hemost. 1987;  13 464-474
  • 15 Linhardt R J, Liu J, Han X-J. Mapping and sequencing of oligosaccharides by electrophoresis.  Trends Glycosci Glycotechnol. 1993;  5 181-192
  • 16 Merry C L, Lyon M, Deakin J A, Hopwood J J, Gallagher J T. Highly sensitive sequencing of the sulfated domains of heparan sulfate.  J Biol Chem. 1999;  274 18455-18462
  • 17 Vives R R, Pye D A, Salmivirta M, Hopwood J J, Lindahl U, Gallagher J T. Sequence analysis of heparan sulphate and heparin oligosaccharides.  Biochem J. 1999;  339 767-773
  • 18 Turnbull J E, Hopwood J J, Gallagher J T. A strategy for rapid sequencing of heparan sulfate and heparin saccharides.  Proc Natl Acad Sci USA. 1999;  96 2698-2703
  • 19 Venkataraman G, Shriver Z, Raman R, Sasisekharan R. Sequencing complex polysaccharides.  Science. 1999;  286 537-542
  • 20 Liu J, Desai U R, Han X, Linhardt R J. Sequencing of heparin.  Glycobiology. 1995;  5 765-774
  • 21 Gallagher J T. The extended family of proteoglycans: social residents of the pericellular zone.  Curr Opin Cell Biol. 1989;  1 1201-1218
  • 22 Esko J D, Selleck S B. Order out of chaos: assembly of ligand binding sites in heparan sulfate.  Annu Rev Biochem. 2002;  71 435-471
  • 23 Lidholt K. Biosynthesis of glycosaminoglycans in mammalian cells and in bacteria.  Biochem Soc Trans. 1997;  25 866-870
  • 24 Robinson H C, Horner A A, Höök M, Ogren S, Lindahl U A. Proteoglycan form of heparin and its degradation to single-chain molecules.  J Biol Chem. 1978;  253 6687-6693
  • 25 Fransson L-A. Heparan sulfate proteoglycans: structure and properties. In: Lane DA, Lindahl U Heparin Chemical and Biological Properties, Clinical Applications. Boca Raton, FL; E. Arnold 1989: 115-133
  • 26 DeAngelis P L, Gunay N S, Toida T, Mao W-J, Linhardt R J. Identification of the capsular polysaccharides of type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively.  Carbohydr Res. 2002;  337 1547-1552
  • 27 DeAngelis P L. Microbial glycosaminoglycan glycosyltransferases.  Glycobiology. 2002;  12 9R-16R
  • 28 Gallagher J T, Walker A. Molecular distinctions between heparan sulphate and heparin.  Biochem J. 1985;  230 665-674
  • 29 Gallagher J T, Turnbull J E, Lyon M. Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme.  Int J Biochem. 1992;  24 553-560
  • 30 Liu J, Shworak N W, Sinaӱ P et al.. Expression of heparan sulfate D-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities.  J Biol Chem. 1999;  274 5185-5192
  • 31 Kobayashi M, Sugumaran G, Liu J, Shworak N W, Silbert J E, Rosenberg R D. Molecular cloning and characterization of a human uronyl 2-sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan/chondroitin sulfate.  J Biol Chem. 1999;  274 10474-10480
  • 32 Kobayashi M, Habuchi H, Habuchi O, Saito M, Kimata K. Purification and characterization of heparan sulfate 2-sulfotransferase from cultured Chinese hamster ovary cells.  J Biol Chem. 1996;  271 7645-7653
  • 33 Forsberg E, Pejler G, Ringvall M et al.. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme.  Nature. 1999;  400 773-776
  • 34 Stringer S E, Mayer-Proschel M, Kalyani A, Rao M, Gallagher J T. Heparin is a unique marker of progenitors in the glial cell lineage.  J Biol Chem. 1999;  274 25455-25460
  • 35 Humphries D E, Wong G W, Friend D S et al.. Heparin is essential for the storage of specific granule proteases in mast cells.  Nature. 1999;  400 769-772
  • 36 Karst N A, Linhardt R J. Recent chemical and enzymatic approaches to the synthesis of glycosaminoglycan oligosaccharides.  Curr Med Chem. 2003;  10 1993-2031
  • 37 Van Boeckel C AA, Petitou M. The unique antithrombin III binding domain of heparin: a lead to new synthetic antithrombotics.  Angew Chem Int Ed Engl. 1993;  32 1671-1690
  • 38 Ichikawa Y, Monden R, Kuzuhara H. Synthesis of methyl glycoside derivatives of tri- and penta-saccharides related to the antithrombin III-binding sequence of heparin employing cellobiose as a key starting-material.  Carbohydr Res. 1988;  172 37-64
  • 39 Lucas H, Basten J EM, Konradsson P, Van Boeckel C AA. A short synthetic route towards a biologically active heparin-like pentasaccharide with a pseudo-alternating sequence.  Angew Chem Int Ed Engl. 1993;  32 434-436
  • 40 Thollas B, Jacquinet J-C. Synthesis of various sulfoforms of the trisaccharide β-D-GlcpA (1→3)-β-D-Galp-(1→3)-β-D-Galp-(1→OMP) as probes for the study of the biosynthesis and sorting of proteoglycans.  Org Biomol Chem. 2004;  2 434-442
  • 41 Jacquinet J-C. An expeditious preparation of various sulfoforms of the disaccharide β-D Galp-(1→3)-D-Galp, a partial structure of the linkage region of proteoglycans, as their 4-methoxyphenyl β-D-glycosides.  Carbohydr Res. 2004;  339 349-359
  • 42 Prabhu A, Venot A, Boons G-J. New set of orthogonal protecting groups for the modular synthesis of heparan sulfate fragments.  Org Lett. 2003;  5 4975-4978
  • 43 Lohman G JS, Seeberger P H. A stereochemical surprise at the late stage of the synthesis of fully N-differentiated heparin oligosaccharides containing amino, acetamido, and N-sulfonate groups.  J Org Chem. 2004;  69 4081-4093
  • 44 Orgueira H A, Bartolozzi A, Schell P, Litjens E JN, Palmacci E R, Seeberger P H. Modular synthesis of heparin oligosaccharides.  Chemistry. 2003;  9 140-169
  • 45 Koshida S, Suda Y, Sobel M, Ormsby J, Kusumoto S. Synthesis of heparin partial structures and their binding activities to platelets.  Bioorg Med Chem Lett. 1999;  9 3127-3132
  • 46 Tabeur C, Mallet J-M, Bono F, Herbert J-M, Petitou M, Sinaӱ P. Oligosaccharides corresponding to the regular sequence of heparin: chemical synthesis and interaction with FGF-2.  Bioorg Med Chem. 1999;  7 2003-2012
  • 47 Petitou M, van Boeckel C AA. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next?.  Angew Chem Int Ed Engl. 2004;  43 3118-3133
  • 48 Dong S D, Oberthur M, Losey H C et al.. The structural basis for induction of VanB resistance.  J Am Chem Soc. 2002;  124 9064-9065
  • 49 Karst N, Islam T F, Linhardt R J. Sulfo-protected hexosamine monosaccharides: potentially versatile building blocks for glycosaminoglycan synthesis.  Org Lett. 2003;  5 4839-4842
  • 50 Jin W, DeAngelis P L. Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida .  Glycobiology. 2003;  13 661-671
  • 51 DeAngelis P L, Oatman L C, Gay D F. Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors.  J Biol Chem. 2003;  278 35199-35203
  • 52 Pummill P E, DeAngelis P L. Alteration of polysaccharide size distribution of a vertebrate hyaluronan synthase by mutation.  J Biol Chem. 2003;  278 19808-19814
  • 53 DeAngelis P L. Microbial glycosaminoglycan glycosyltransferases.  Glycobiology. 2002;  12 9R-16R
  • 54 DeAngelis P L, Gunay N S, Toida T, Mao W-J, Linhardt R J. Identification of the capsular polysaccharides of type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively.  Carbohydr Res. 2002;  337 1547-1552
  • 55 Chen J, Avci F Y, Muñoz E M et al.. Enzymatically redesigning of biologically active heparan sulfate.  J Biol Chem. 2005;  280 42817-42825
  • 56 Muñoz E, Xu D, Avci F, Kemp M, Liu J, Linhardt R J. Enzymatic synthesis of heparin related polysaccharides on sensor chips: rapid screening of heparin-protein interactions.  Biochem Biophys Res Commun. 2006;  339 597-602
  • 57 Duncan M B, Liu M, Fox C, Liu J. Characterization of the N-deacetylase domain from the heparan sulfate N-deacetylase/N-sulfotransferase 2.  Biochem Biophys Res Commun. 2006;  339 1232-1237
  • 58 Kakuta Y, Sueyoshi T, Negishi M, Pedersen L C. Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/N-sulfotransferase 1.  J Biol Chem. 1999;  274 10673-10676
  • 59 Edavettal S C, Lee K A, Negishi M, Linhardt R J, Liu J, Pedersen L C. Crystal structure and mutational analysis of heparan sulfate 3-O-sulfotransferase isoform 1.  J Biol Chem. 2004;  279 25789-25797
  • 60 Moon A F, Edavettal S C, Krahn J M et al.. Structural analysis of the sulfotransferase (3-OST-3) involved in the biosynthesis of an entry receptor of herpes simplex virus 1.  J Biol Chem. 2004;  279 45185-45193
  • 61 Burkart M D, Izumi M, Chapman E, Lin C-H, Wong C-H. Regeneration of PAPS for the enzymatic synthesis of sulfated oligosaccharides.  J Org Chem. 2000;  65 5565-5574
  • 62 Smeds E, Habuchi H, Do A-T et al.. Substrate specificities of mouse heparan sulphate glucosaminyl 6-O-sulfotransferases.  Biochem J. 2003;  372 371-380
  • 63 Zhang L, Lawrence R, Schwartz J J et al.. The effect of precursor structures on the action of glucosaminyl 3-O-sulfotransferase-1 and the biosynthesis of anticoagulant heparan sulfate.  J Biol Chem. 2001;  276 28806-28813
  • 64 Atha D H, Lormeau J-C, Petitou M, Rosenberg R D, Choay J. Contribution of monosaccharide residues in heparin binding to antithrombin III.  Biochemistry. 1985;  24 6723-6729
  • 65 Thanawiroon C, Rice K G, Toida T, Linhardt R J. LC/MS sequencing of highly sulfated heparin-derived oligosaccharides.  J Biol Chem. 2004;  279 2608-2615
  • 66 Chi L, Amster J, Linhardt R J. Mass spectrometry for the analysis of highly charged sulfated carbohydrates.  Curr Anal Chem. 2005;  1 223-240
  • 67 Wolff J J, Chi L, Linhardt R J, Amster I J. Distinguishing glucuronic from iduronic acid in glycosaminoglycan tetrasaccharides by using electron detachment dissociation.  Anal Chem. 2007;  79 2015-2022
  • 68 Laremore T N, Murugesan S, Park T-J, Avci F Y, Zagorevski D V, Linhardt R J. Matrix assisted laser desorption/ionization mass spectrometric analysis of uncomplexed highly sulfated oligosaccharides using ionic liquid matrices.  Anal Chem. 2006;  78 1774-1779
  • 69 Laremore T N, Zhang F, Linhardt R J. New ionic liquid matrix for direct UV-MALDI TOF-MS analysis of dermatan sulfate and chondroitin sulfate oligosaccharides.  Anal Chem. 2007;  79 1604-1610
  • 70 Seeberger P H, Werz D B. Automated synthesis of oligosaccharides as a basis for drug discovery.  Nat Rev Drug Discov. 2005;  4 751-763
  • 71 Murugesan S, Xie J, Linhardt R J. Immobilization of heparin-approaches and applications.  Curr Top Med Chem. 2006;  , in press
  • 72 Murugesan S, Park T, Yang H, Mousa S, Linhardt R J. Nano-based neoproteoglycans blood compatible carbon nanotubes.  Langmuir. 2006;  22 3461-3463
  • 73 Kumar A, Murugesan S, Pushparaj V L et al.. Conducting organic-inorganic submicron rods based on ionic liquids.  Small. 2006;  3 429-433
  • 74 Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics.  Nature. 2006;  442 381-386
  • 75 DeAngelis P L. Polymer grafting by polysaccharide synthases.  1999;  , U.S. Patent 6,444,447
  • 76 Zhi Z L, Powell A K, Turnbull J E. Fabrication of carbohydrate microarrays on gold surfaces: Direct attachment of nonderivatized oligosaccharides to hydrazide modified self-assembled monolayers.  Anal Chem. 2006;  78 4786-4793
  • 77 de Paz J L, Noti C, Seeberger P H. Microarrays of synthetic heparin oligosaccharides.  J Am Chem Soc. 2006;  128 2766-2767
  • 78 Hernaiz M, Liu J, Rosenberg R D, Linhardt R J. Enzymatic modification of heparan sulfate on a biochip promotes its interaction with antithrombin III.  Biochem Biophys Res Commun. 2000;  276 292-297
  • 79 Bertone P, Snyder M. Advances in functional protein microarray technology.  FEBS J. 2005;  272 5400-5411
  • 80 Mikhailov D, Young H C, Linhardt R J, Mayo K H. Heparin dodecasaccharide binding to platelet factor-4 and growth-related protein-α: Introduction of a partially folded state and implications for heparin induced thrombocytopenia.  J Biol Chem. 1999;  274 25317-25329
  • 81 De Graffenried C L, Bertozzi C R. The roles of enzyme localization and complex formation in glycan assembly within the Golgi apparatus.  Curr Opin Cell Biol. 2004;  16 356-363

Robert J LinhardtPh.D. 

Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute

110 8th Street, Troy, NY 12180

Email: linhar@rpi.edu