ABSTRACT
Heparin and its low molecular weight heparin derivatives, widely used as clinical anticoagulants, are acidic polysaccharide members of a family of biomacromolecules called glycosaminoglycans (GAGs). Heparin and the related heparan sulfate are biosynthesized in the Golgi apparatus of eukaryotic cells. Heparin is a polycomponent drug that currently is prepared for clinical use by extraction from animal tissues. A heparin pentasaccharide, fondaparinux, has also been prepared through chemical synthesis for use as a homogenous anticoagulant drug. Recent enabling technologies suggest that it may now be possible to synthesize heparin and its derivatives enzymatically. Moreover, new technologies including advances in synthetic carbohydrate synthesis, enzyme-based GAG synthesis, micro- and nano-display of GAGs, rapid on-line structural analysis, and microarray/microfluidic technologies might be applied to the enzymatic synthesis of heparins with defined structures and exhibiting selected activities. The advent of these new technologies also makes it possible to consider the construction of an artificial Golgi to increase our understanding of the cellular control of GAG biosyntheses in this organelle.
KEYWORDS
Heparin - enzymes - biosynthesis - Golgi - microfluidics
REFERENCES
1
Linhardt R J.
Heparin: an important drug enters its seventh decade.
Chem Ind.
1991;
2
45-50
2
Linhardt R J, Gunay N S.
Production and chemical processing of low molecular weight heparins.
Semin Thromb Hemost.
1999;
25
5-14
3
Casu B.
Structure and biological activity of heparin.
Adv Carbohydr Chem Biochem.
1985;
43
51-134
4
Munoz E M, Linhardt R J.
Heparin binding domains in vascular biology.
Arterioscler Thromb Vascular Biol.
2004;
24
1549-1557
5
Fareed J, Jeske W, Hoppensteadt D, Clarizio R, Walgenga J M.
Low molecular weight heparins: pharmacologic profile and product differentiation.
Am J Cardiol.
1998;
82
3L-10L
6
Linhardt R J, Claude S.
Hudson Award address in carbohydrate chemistry. Heparin: structure and activity.
J Med Chem.
2003;
46
2551-2564
7
Warkentin T E, Cook D J.
Heparin, low molecular weight heparin, and heparin-induced thrombocytopenia in the ICU.
Crit Care Clin.
2005;
21
513-529
8
Vuillemenot A, Schiele F, Meneveau N et al..
Efficacy of a synthetic pentasaccharide, a pure factor Xa inhibitor, as an antithrombotic agent-a pilot study in the setting of coronary angioplasty.
Thromb Haemost.
1999;
81
214-220
9
Sinaӱ P, Jacquinet J-C.
Total synthesis of a heparin pentasaccharide fragment having high affinity for antithrombin III.
Carbohydr Res.
1984;
132
C5-C9
10
Efird L E, Kockler D R.
Fondaparinux for thromboembolic treatment and prophylaxis of heparin-induced thrombocytopenia.
Ann Pharmacother.
2006;
40
1383-1387
11
Avci F Y, Karst N A, Linhardt R J.
Synthetic oligosaccharides as heparin-mimetics displaying anticoagulant properties.
Curr Pharm Des.
2003;
9
2323-2335
12
Lindahl U, Feingold D S, Roden L.
Biosynthesis of heparin.
Trends Biochem Sci.
1986;
11
221-225
13
Griffin C C, Linhardt R J, VanGorp C L et al..
Isolation and characterization of heparan sulfate from crude porcine intestinal mucosa peptidoglycan heparin.
Carbohydr Res.
1995;
276
183-197
14
Marcum J A, Rosenberg R D.
Anticoagulantly active heparan sulfate proteoglycan and the vascular endothelium.
Semin Thromb Hemost.
1987;
13
464-474
15
Linhardt R J, Liu J, Han X-J.
Mapping and sequencing of oligosaccharides by electrophoresis.
Trends Glycosci Glycotechnol.
1993;
5
181-192
16
Merry C L, Lyon M, Deakin J A, Hopwood J J, Gallagher J T.
Highly sensitive sequencing of the sulfated domains of heparan sulfate.
J Biol Chem.
1999;
274
18455-18462
17
Vives R R, Pye D A, Salmivirta M, Hopwood J J, Lindahl U, Gallagher J T.
Sequence analysis of heparan sulphate and heparin oligosaccharides.
Biochem J.
1999;
339
767-773
18
Turnbull J E, Hopwood J J, Gallagher J T.
A strategy for rapid sequencing of heparan sulfate and heparin saccharides.
Proc Natl Acad Sci USA.
1999;
96
2698-2703
19
Venkataraman G, Shriver Z, Raman R, Sasisekharan R.
Sequencing complex polysaccharides.
Science.
1999;
286
537-542
20
Liu J, Desai U R, Han X, Linhardt R J.
Sequencing of heparin.
Glycobiology.
1995;
5
765-774
21
Gallagher J T.
The extended family of proteoglycans: social residents of the pericellular zone.
Curr Opin Cell Biol.
1989;
1
1201-1218
22
Esko J D, Selleck S B.
Order out of chaos: assembly of ligand binding sites in heparan sulfate.
Annu Rev Biochem.
2002;
71
435-471
23
Lidholt K.
Biosynthesis of glycosaminoglycans in mammalian cells and in bacteria.
Biochem Soc Trans.
1997;
25
866-870
24
Robinson H C, Horner A A, Höök M, Ogren S, Lindahl U A.
Proteoglycan form of heparin and its degradation to single-chain molecules.
J Biol Chem.
1978;
253
6687-6693
25 Fransson L-A. Heparan sulfate proteoglycans: structure and properties . In: Lane DA, Lindahl U Heparin Chemical and Biological Properties, Clinical Applications. Boca Raton, FL; E. Arnold 1989: 115-133
26
DeAngelis P L, Gunay N S, Toida T, Mao W-J, Linhardt R J.
Identification of the capsular polysaccharides of type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively.
Carbohydr Res.
2002;
337
1547-1552
27
DeAngelis P L.
Microbial glycosaminoglycan glycosyltransferases.
Glycobiology.
2002;
12
9R-16R
28
Gallagher J T, Walker A.
Molecular distinctions between heparan sulphate and heparin.
Biochem J.
1985;
230
665-674
29
Gallagher J T, Turnbull J E, Lyon M.
Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme.
Int J Biochem.
1992;
24
553-560
30
Liu J, Shworak N W, Sinaӱ P et al..
Expression of heparan sulfate D-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities.
J Biol Chem.
1999;
274
5185-5192
31
Kobayashi M, Sugumaran G, Liu J, Shworak N W, Silbert J E, Rosenberg R D.
Molecular cloning and characterization of a human uronyl 2-sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan/chondroitin sulfate.
J Biol Chem.
1999;
274
10474-10480
32
Kobayashi M, Habuchi H, Habuchi O, Saito M, Kimata K.
Purification and characterization of heparan sulfate 2-sulfotransferase from cultured Chinese hamster ovary cells.
J Biol Chem.
1996;
271
7645-7653
33
Forsberg E, Pejler G, Ringvall M et al..
Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme.
Nature.
1999;
400
773-776
34
Stringer S E, Mayer-Proschel M, Kalyani A, Rao M, Gallagher J T.
Heparin is a unique marker of progenitors in the glial cell lineage.
J Biol Chem.
1999;
274
25455-25460
35
Humphries D E, Wong G W, Friend D S et al..
Heparin is essential for the storage of specific granule proteases in mast cells.
Nature.
1999;
400
769-772
36
Karst N A, Linhardt R J.
Recent chemical and enzymatic approaches to the synthesis of glycosaminoglycan oligosaccharides.
Curr Med Chem.
2003;
10
1993-2031
37
Van Boeckel C AA, Petitou M.
The unique antithrombin III binding domain of heparin: a lead to new synthetic antithrombotics.
Angew Chem Int Ed Engl.
1993;
32
1671-1690
38
Ichikawa Y, Monden R, Kuzuhara H.
Synthesis of methyl glycoside derivatives of tri- and penta-saccharides related to the antithrombin III-binding sequence of heparin employing cellobiose as a key starting-material.
Carbohydr Res.
1988;
172
37-64
39
Lucas H, Basten J EM, Konradsson P, Van Boeckel C AA.
A short synthetic route towards a biologically active heparin-like pentasaccharide with a pseudo-alternating sequence.
Angew Chem Int Ed Engl.
1993;
32
434-436
40
Thollas B, Jacquinet J-C.
Synthesis of various sulfoforms of the trisaccharide β-D-Glcp A (1→3)-β-D-Galp-(1→3)-β-D-Galp-(1→OMP) as probes for the study of the biosynthesis and sorting of proteoglycans.
Org Biomol Chem.
2004;
2
434-442
41
Jacquinet J-C.
An expeditious preparation of various sulfoforms of the disaccharide β-D Galp-(1→3)-D-Galp, a partial structure of the linkage region of proteoglycans, as their 4-methoxyphenyl β-D-glycosides.
Carbohydr Res.
2004;
339
349-359
42
Prabhu A, Venot A, Boons G-J.
New set of orthogonal protecting groups for the modular synthesis of heparan sulfate fragments.
Org Lett.
2003;
5
4975-4978
43
Lohman G JS, Seeberger P H.
A stereochemical surprise at the late stage of the synthesis of fully N -differentiated heparin oligosaccharides containing amino, acetamido, and N -sulfonate groups.
J Org Chem.
2004;
69
4081-4093
44
Orgueira H A, Bartolozzi A, Schell P, Litjens E JN, Palmacci E R, Seeberger P H.
Modular synthesis of heparin oligosaccharides.
Chemistry.
2003;
9
140-169
45
Koshida S, Suda Y, Sobel M, Ormsby J, Kusumoto S.
Synthesis of heparin partial structures and their binding activities to platelets.
Bioorg Med Chem Lett.
1999;
9
3127-3132
46
Tabeur C, Mallet J-M, Bono F, Herbert J-M, Petitou M, Sinaӱ P.
Oligosaccharides corresponding to the regular sequence of heparin: chemical synthesis and interaction with FGF-2.
Bioorg Med Chem.
1999;
7
2003-2012
47
Petitou M, van Boeckel C AA.
A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next?.
Angew Chem Int Ed Engl.
2004;
43
3118-3133
48
Dong S D, Oberthur M, Losey H C et al..
The structural basis for induction of VanB resistance.
J Am Chem Soc.
2002;
124
9064-9065
49
Karst N, Islam T F, Linhardt R J.
Sulfo-protected hexosamine monosaccharides: potentially versatile building blocks for glycosaminoglycan synthesis.
Org Lett.
2003;
5
4839-4842
50
Jin W, DeAngelis P L.
Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida
.
Glycobiology.
2003;
13
661-671
51
DeAngelis P L, Oatman L C, Gay D F.
Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors.
J Biol Chem.
2003;
278
35199-35203
52
Pummill P E, DeAngelis P L.
Alteration of polysaccharide size distribution of a vertebrate hyaluronan synthase by mutation.
J Biol Chem.
2003;
278
19808-19814
53
DeAngelis P L.
Microbial glycosaminoglycan glycosyltransferases.
Glycobiology.
2002;
12
9R-16R
54
DeAngelis P L, Gunay N S, Toida T, Mao W-J, Linhardt R J.
Identification of the capsular polysaccharides of type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively.
Carbohydr Res.
2002;
337
1547-1552
55
Chen J, Avci F Y, Muñoz E M et al..
Enzymatically redesigning of biologically active heparan sulfate.
J Biol Chem.
2005;
280
42817-42825
56
Muñoz E, Xu D, Avci F, Kemp M, Liu J, Linhardt R J.
Enzymatic synthesis of heparin related polysaccharides on sensor chips: rapid screening of heparin-protein interactions.
Biochem Biophys Res Commun.
2006;
339
597-602
57
Duncan M B, Liu M, Fox C, Liu J.
Characterization of the N -deacetylase domain from the heparan sulfate N -deacetylase/N -sulfotransferase 2.
Biochem Biophys Res Commun.
2006;
339
1232-1237
58
Kakuta Y, Sueyoshi T, Negishi M, Pedersen L C.
Crystal structure of the sulfotransferase domain of human heparan sulfate N -deacetylase/N -sulfotransferase 1.
J Biol Chem.
1999;
274
10673-10676
59
Edavettal S C, Lee K A, Negishi M, Linhardt R J, Liu J, Pedersen L C.
Crystal structure and mutational analysis of heparan sulfate 3-O-sulfotransferase isoform 1.
J Biol Chem.
2004;
279
25789-25797
60
Moon A F, Edavettal S C, Krahn J M et al..
Structural analysis of the sulfotransferase (3-OST-3) involved in the biosynthesis of an entry receptor of herpes simplex virus 1.
J Biol Chem.
2004;
279
45185-45193
61
Burkart M D, Izumi M, Chapman E, Lin C-H, Wong C-H.
Regeneration of PAPS for the enzymatic synthesis of sulfated oligosaccharides.
J Org Chem.
2000;
65
5565-5574
62
Smeds E, Habuchi H, Do A-T et al..
Substrate specificities of mouse heparan sulphate glucosaminyl 6-O-sulfotransferases.
Biochem J.
2003;
372
371-380
63
Zhang L, Lawrence R, Schwartz J J et al..
The effect of precursor structures on the action of glucosaminyl 3-O-sulfotransferase-1 and the biosynthesis of anticoagulant heparan sulfate.
J Biol Chem.
2001;
276
28806-28813
64
Atha D H, Lormeau J-C, Petitou M, Rosenberg R D, Choay J.
Contribution of monosaccharide residues in heparin binding to antithrombin III.
Biochemistry.
1985;
24
6723-6729
65
Thanawiroon C, Rice K G, Toida T, Linhardt R J.
LC/MS sequencing of highly sulfated heparin-derived oligosaccharides.
J Biol Chem.
2004;
279
2608-2615
66
Chi L, Amster J, Linhardt R J.
Mass spectrometry for the analysis of highly charged sulfated carbohydrates.
Curr Anal Chem.
2005;
1
223-240
67
Wolff J J, Chi L, Linhardt R J, Amster I J.
Distinguishing glucuronic from iduronic acid in glycosaminoglycan tetrasaccharides by using electron detachment dissociation.
Anal Chem.
2007;
79
2015-2022
68
Laremore T N, Murugesan S, Park T-J, Avci F Y, Zagorevski D V, Linhardt R J.
Matrix assisted laser desorption/ionization mass spectrometric analysis of uncomplexed highly sulfated oligosaccharides using ionic liquid matrices.
Anal Chem.
2006;
78
1774-1779
69
Laremore T N, Zhang F, Linhardt R J.
New ionic liquid matrix for direct UV-MALDI TOF-MS analysis of dermatan sulfate and chondroitin sulfate oligosaccharides.
Anal Chem.
2007;
79
1604-1610
70
Seeberger P H, Werz D B.
Automated synthesis of oligosaccharides as a basis for drug discovery.
Nat Rev Drug Discov.
2005;
4
751-763
71
Murugesan S, Xie J, Linhardt R J.
Immobilization of heparin-approaches and applications.
Curr Top Med Chem.
2006;
, in press
72
Murugesan S, Park T, Yang H, Mousa S, Linhardt R J.
Nano-based neoproteoglycans blood compatible carbon nanotubes.
Langmuir.
2006;
22
3461-3463
73
Kumar A, Murugesan S, Pushparaj V L et al..
Conducting organic-inorganic submicron rods based on ionic liquids.
Small.
2006;
3
429-433
74
Psaltis D, Quake S R, Yang C.
Developing optofluidic technology through the fusion of microfluidics and optics.
Nature.
2006;
442
381-386
75
DeAngelis P L.
Polymer grafting by polysaccharide synthases.
1999;
, U.S. Patent 6,444,447
76
Zhi Z L, Powell A K, Turnbull J E.
Fabrication of carbohydrate microarrays on gold surfaces: Direct attachment of nonderivatized oligosaccharides to hydrazide modified self-assembled monolayers.
Anal Chem.
2006;
78
4786-4793
77
de Paz J L, Noti C, Seeberger P H.
Microarrays of synthetic heparin oligosaccharides.
J Am Chem Soc.
2006;
128
2766-2767
78
Hernaiz M, Liu J, Rosenberg R D, Linhardt R J.
Enzymatic modification of heparan sulfate on a biochip promotes its interaction with antithrombin III.
Biochem Biophys Res Commun.
2000;
276
292-297
79
Bertone P, Snyder M.
Advances in functional protein microarray technology.
FEBS J.
2005;
272
5400-5411
80
Mikhailov D, Young H C, Linhardt R J, Mayo K H.
Heparin dodecasaccharide binding to platelet factor-4 and growth-related protein-α: Introduction of a partially folded state and implications for heparin induced thrombocytopenia.
J Biol Chem.
1999;
274
25317-25329
81
De Graffenried C L, Bertozzi C R.
The roles of enzyme localization and complex formation in glycan assembly within the Golgi apparatus.
Curr Opin Cell Biol.
2004;
16
356-363
Robert J LinhardtPh.D.
Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180
Email: linhar@rpi.edu