Horm Metab Res 2007; 39(8): 567-574
DOI: 10.1055/s-2007-984471
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Circadian and Age-dependent Expression Patterns of GLUT2 and Glucokinase in the Pancreatic β-Cell of Diabetic and Nondiabetic Rats

T. Frese 1 , I. Bazwinsky 1 , E. Mühlbauer 2 , E. Peschke 1
  • 1Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
  • 2Saxon Academy of Sciences, Leipzig, Germany
Further Information

Publication History

received 22.01.2007

accepted 12.04.2007

Publication Date:
21 August 2007 (online)

Abstract

Alterations in glucose sensing are well-known in both humans and animal models of non-insulin-dependent diabetes mellitus. However, the circadian- and age-dependent expression of glucose-sensing genes has not previously been investigated in vivo. In the present paper, we show a progressive loss of β-cell GLUT2-mRNA and, by immunocytochemistry, a gain of soluble, cytoplasmic GLUT2-protein in Goto-Kakizaki rat islets. We report that GLUT2-mRNA shows significant diurnal variation, which is stronger in metabolically healthy rats. We also demonstrate the significant diurnal variation of glucokinase-mRNA, with higher levels in the pancreas of 6-week-old Goto-Kakizaki rats than in Wistar rats. This leads to a maximum glucose phosphorylation capacity in-phase with food intake, enhanced glucose-stimulated insulin secretion, and prevents postprandial hyperglycemia. Perfusion experiments showed a reduction in glucose-stimulated insulin secretion in Goto-Kakizaki rat islets with an impaired first phase. Hyperglycemia and hypoinsulinemia in newborn and up to 3-week-old Goto-Kakizaki rats are thus probably due to reduced pancreatic β-cell content, reduced β-cell insulin content and impaired glucose sensing. The de-compensation of the metabolic situation in 42-week-old Goto-Kakizaki rats is likely to be caused by β-cell destruction accompanied by negligible accumulation of GLUT2 in the cell membrane and further reduction of glucokinase expression.

References

  • 1 Zimmet P. The burden of type 2 diabetes: are we doing enough?.  Diabetes Metab. 2003;  29 ((4 Pt 2)) 6S9-18
  • 2 Joshi RL, Lamothe B, Bucchini D, Jami J. Genetically engineered mice as animal models for NIDDM.  FEBS Lett. 1997;  401 99-103
  • 3 Rees DA, Alcolado JC. Animal models of diabetes mellitus.  Diabet Med. 2005;  22 359-370
  • 4 Johnson JH, Newgard CB, Milburn JL, Lodish HF, Thorens B. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence.  J Biol Chem. 1990;  265 6548-6551
  • 5 Matschinsky FM. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes.  Diabetes. 1990;  39 647-652
  • 6 Meglasson MD, Matschinsky FM. New perspectives on pancreatic islet glucokinase.  Am J Physiol. 1984;  246 E1-E13
  • 7 Jörns A, Tiedge M, Ziv E, Shafrir E, Lenzen S. Gradual loss of pancreatic beta-cell insulin, glucokinase and GLUT2 glucose transporter immunoreactivities during the time course of nutritionally induced type-2 diabetes in Psammomys obesus (sand rat).  Virchows Arch. 2002;  440 63-69
  • 8 Johnson JH, Ogawa A, Chen L, Orci L, Newgard CB, Alam T, Unger RH. Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes.  Science. 1990;  250 546-549
  • 9 Khan A, Chandramouli V, Ostenson CG, Low H, Landau BR, Efendic S. Glucose cycling in islets from healthy and diabetic rats.  Diabetes. 1990;  39 456-459
  • 10 Portha B. Programmed disorders of beta-cell development and function as one cause for type 2 diabetes? The GK rat paradigm.  Diabetes Metab Res Rev. 2005;  21 495-504
  • 11 Goto Y, Suzuki K, Ono T, Sasaki M, Toyota T. Development of diabetes in the non-obese NIDDM rat (GK rat).  Adv Exp Med Biol. 1988;  246 29-31
  • 12 Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding.  Tohoku J Exp Med. 1976;  119 85-90
  • 13 Goto Y, Kakizaki M. The spontaneous-diabetes rat: A model of noninsulin dependent diabetes mellitus.  Proc Japan Acad. 1981;  57 381-384
  • 14 Ohneda M, Johnson JH, Inman LR, Chen L, Suzuki K, Goto Y, Alam T, Ravazzola M, Orci L, Unger RH. GLUT2 expression and function in beta-cells of GK rats with NIDDM. Dissociation between reductions in glucose transport and glucose-stimulated insulin secretion.  Diabetes. 1993;  42 1065-1072
  • 15 Weinert D, Ulrich FE, Schuh J. Desynchronization of the circadian rhythm of plasma insulin levels and feeding schedules after inversion of periodicity].  Biomed Biochim Acta. 1986;  45 1135-1140
  • 16 Weinert D, Schuh J, Ulrich F. Tagesrhythmen der Plasmainsulinkonzentration in verschiedenen Ontogenesestadien.  Wiss Z Univ Halle. 1989;  XXXVIII 131-144
  • 17 Malherbe C, Gasparo M De, Hertogh R De, Hoet JJ. Circadian variations of blood sugar and plasma insulin levels in man.  Diabetologia. 1969;  5 397-404
  • 18 la Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus.  Diabetes. 2001;  50 1237-1243
  • 19 Mühlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E. Indication of circadian oscillations in the rat pancreas.  FEBS Lett. 2004;  564 91-96
  • 20 Peschke E, Peschke D. Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets.  Diabetologia. 1998;  41 1085-1092
  • 21 Peschke E, Frese T, Chankiewitz E, Peschke D, Preiss U, Schneyer U, Spessert R, Mühlbauer E. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status.  J Pineal Res. 2006;  40 135-143
  • 22 Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR.  Biochem Biophys Res Commun. 2004;  313 856-862
  • 23 Touchberry CD, Wacker MJ, Richmond SR, Whitman SA, Godard MP. Age-related changes in relative expression of real-time PCR housekeeping genes in human skeletal muscle.  J Biomol Tech. 2006;  17 157-162
  • 24 Csernus VJ, Hammer T, Peschke D, Peschke E. Dynamic insulin secretion from perifused rat pancreatic islets.  Cell Mol Life Sci. 1998;  54 733-743
  • 25 Giroix MH, Vesco L, Portha B. Functional and metabolic perturbations in isolated pancreatic islets from the GK rat, a genetic model of noninsulin-dependent diabetes.  Endocrinology. 1993;  132 815-822
  • 26 Kim JH, Nishina PM, Naggert JK. Genetic models for non insulin dependent diabetes mellitus in rodents.  J Basic Clin Physiol Pharmacol. 1998;  9 325-345
  • 27 Ohneda M, Johnson JH, Lee YH, Nagasawa Y, Unger RH. Post-GLUT-2 defects in beta-cells of non-insulin-dependent diabetic obese rats.  Am J Physiol. 1994;  267 E968-E974
  • 28 Fujimoto Y, Donahue EP, Shiota M. Defect in glucokinase translocation in Zucker diabetic fatty rats.  Am J Physiol Endocrinol Metab. 2004;  287 E414-E423
  • 29 Codina J, Vall M, Herrera E. Comparative changes with age of the fasting response in circulating ketone bodies, glucose and insulin and oral glucose tolerance test in the rat.  Comp Biochem Physiol A. 1982;  71 231-236
  • 30 Madar I, Sildan N, Ilonca A. Age-dependent glucose tolerance in young rats under normal conditions and under glucocorticoid administration.  Endocrinologie. 1984;  22 113-116
  • 31 Allaman-Pillet N, Roduit R, Oberson A, Abdelli S, Ruiz J, Beckmann JS, Schorderet DF, Bonny C. Circadian regulation of islet genes involved in insulin production and secretion.  Mol Cell Endocrinol. 2004;  226 59-66
  • 32 Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R, Bonner-Weir S, Weir GC. Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes.  J Biol Chem. 1999;  274 14112-14121
  • 33 Jörns A, Tiedge M, Sickel E, Lenzen S. Loss of GLUT2 glucose transporter expression in pancreatic beta cells from diabetic Chinese hamsters.  Virchows Arch. 1996;  428 177-185
  • 34 Cockburn BN, Ostrega DM, Sturis J, Kubstrup C, Polonsky KS, Bell GI. Changes in pancreatic islet glucokinase and hexokinase activities with increasing age, obesity, and the onset of diabetes.  Diabetes. 1997;  46 1434-1439
  • 35 Hosokawa H, Hosokawa YA, Leahy JL. Upregulated hexokinase activity in isolated islets from diabetic 90% pancreatectomized rats.  Diabetes. 1995;  44 1328-1333
  • 36 Östenson CG, Khan A, Abdel-Halim SM, Guenifi A, Suzuki K, Goto Y, Efendic S. Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat.  Diabetologia. 1993;  36 3-8
  • 37 Ling ZC, Hong-Lie C, Ostenson CG, Efendic S, Khan A. Hyperglycemia contributes to impaired insulin response in GK rat islets.  Diabetes. 2001;  50 ((Suppl 1)) 108-112
  • 38 Portha B, Giroix MH, Serradas P, Gangnerau MN, Movassat J, Rajas F, Bailbe D, Plachot C, Mithieux G, Marie JC. Beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony.  Diabetes. 2001;  50 ((Suppl 1)) 89-93
  • 39 Hughes SJ, Suzuki K, Goto Y. The role of islet secretory function in the development of diabetes in the GK Wistar rat.  Diabetologia. 1994;  37 863-870
  • 40 Jörns A, Tiedge A, Lenzen S. Nutrient-dependent distribution of insulin and glucokinase immunoreactivities in rat pancreatic beta cells.  Virchows Arch. 1999;  434 75-82
  • 41 Toyoda Y, Miwa I, Kamiya M, Ogiso S, Nonogaki T, Aoki S, Okuda J. Evidence for glucokinase translocation by glucose in rat hepatocytes.  Biochem Biophys Res Commun. 1994;  204 252-256
  • 42 Toyoda Y, Tsuchida A, Iwami E, Shironoguchi H, Miwa I. Regulation of hepatic glucose metabolism by translocation of glucokinase between the nucleus and the cytoplasm in hepatocytes.  Horm Metab Res. 2001;  33 329-336
  • 43 Noma Y, Bonner-Weir S, Latimer JB, Davalli AM, Weir GC. Translocation of glucokinase in pancreatic beta-cells during acute and chronic hyperglycemia.  Endocrinology. 1996;  137 1485-1491
  • 44 Tiedge M, Steffeck H, Elsner M, Lenzen S. Metabolic regulation, activity state, and intracellular binding of glucokinase in insulin-secreting cells.  Diabetes. 1999;  48 514-523
  • 45 Rizzo MA, Magnuson MA, Drain PF, Piston DW. A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin.  J Biol Chem. 2002;  277 34168-34175
  • 46 Iynedjian PB, Gjinovci A, Renold AE. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats.  J Biol Chem. 1988;  263 740-744
  • 47 Sibrowski W, Staegemann U, Seitz HJ. Accelerated turnover of hepatic glucokinase in starved and streptozotocin-diabetic rat.  Eur J Biochem. 1982;  127 571-574
  • 48 Bergsten P. Role of oscillations in membrane potential, cytoplasmic Ca2+, and metabolism for plasma insulin oscillations.  Diabetes. 2002;  51 ((Suppl 1)) 171-176
  • 49 Westerlund J, Bergsten P. Glucose metabolism and pulsatile insulin release from isolated islets.  Diabetes. 2001;  50 1785-1790
  • 50 Akiyama H, Yokono K, Shii K, Ogawa W, Taniguchi H, Baba S, Kasuga M. Natural regulatory mechanisms of insulin degradation by insulin degrading enzyme.  Biochem Biophys Res Commun. 1990;  170 1325-1330
  • 51 Fakhrai-Rad H, Nikoshkov A, Kamel A, Fernstrom M, Zierath JR, Norgren S, Luthman H, Galli J. Insulin-degrading enzyme identified as a candidate diabetes susceptibility gene in GK rats.  Hum Mol Genet. 2000;  9 2149-2158
  • 52 Vahsen S, Rakowski K, Ledwig D, Dietze-Schroeder D, Swifka J, Sasson S, Eckel J. Altered GLUT4 translocation in skeletal muscle of 12/15-lipoxygenase knockout mice.  Horm Metab Res. 2006;  38 391-396
  • 53 Ohara-Imaizumi M, Nishiwaki C, Kikuta T, Nagai S, Nakamichi Y, Nagamatsu S. TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells.  Biochem J. 2004;  381 13-18
  • 54 Abdel-Halim SM, Guenifi A, He B, Yang B, Mustafa M, Hojeberg B, Hillert J, Bakhiet M, Efendic S. Mutations in the promoter of adenylyl cyclase (AC)-III gene, overexpression of AC-III mRNA, and enhanced cAMP generation in islets from the spontaneously diabetic GK rat model of type 2 diabetes.  Diabetes. 1998;  47 498-504
  • 55 Guenifi A, Abdel-Halim SM. Glucose enhances adenylyl cyclase responses in normal but not diabetic GK rat islets.  Pancreas. 2001;  22 65-68

Correspondence

Prof. Dr. med. habil. E. Peschke

Institute of Anatomy and Cell Biology

Martin Luther University Halle-Wittenberg

Grosse Steinstrasse 52

06097 Halle/Saale

Germany

Phone: +49/345/557 17 09

Fax: +49/345/557 40 53

Email: elmar.peschke@medizin.uni-halle.de