References and Notes
1a For reviews, see: Yamaguchi S.
Tamao K.
J. Chem. Soc., Dalton Trans.
1998,
3693
1b
Yamaguchi S.
Tamao K.
J. Organomet. Chem.
2002,
653:
223
2
Yamaguchi S.
Tamao K.
Chem. Lett.
2005,
34:
2
3a
Tamao K.
Uchida M.
Izumizawa T.
Furukawa K.
Yamaguchi S.
J. Am. Chem. Soc.
1996,
118:
11974
3b
Yamaguchi S.
Endo T.
Uchida M.
Izumizawa T.
Furukawa K.
Tamao K.
Chem. Eur. J.
2000,
6:
1683
3c
Luo J.
Xie Z.
Lam JWY.
Cheng L.
Chen H.
Qiu C.
Kwok HS.
Zhan X.
Liu Y.
Zhu D.
Tang BZ.
Chem. Commun.
2001,
1740
3d
Chen J.
Law CC.
Lam JWY.
Dong Y.
Lo SMF.
Williams ID.
Zhu D.
Tang BZ.
Chem. Mater.
2003,
15:
1535
3e
Chen J.
Xie Z.
Lam JWY.
Law CCW.
Tang BZ.
Macromolecules
2003,
36:
1108
3f
Lee J.
Liu Q.-D.
Motala M.
Dane J.
Gao J.
Kang Y.
Wang S.
Chem. Mater.
2004,
16:
1869
3g
Lee J.
Liu Q.-D.
Bai D.-R.
Kang Y.
Tao Y.
Wang S.
Organometallics
2004,
23:
6205
4a
Xu G.
Wakamiya A.
Yamaguchi S.
J. Am. Chem. Soc.
2005,
127:
1638
4b
Mouri K.
Wakamiya A.
Yamada H.
Kajiwara T.
Yamaguchi S.
Org. Lett.
2007,
9:
93
5a
Boydston AJ.
Yin Y.
Pagenkopf BL.
J. Am. Chem. Soc.
2004,
126:
10350
5b
Boydston AJ.
Pagenkopf BL.
Angew. Chem. Int. Ed.
2004,
43:
6336
6a
Otera J.
Pure Appl. Chem.
2006,
78:
731
6b
Orita A.
Otera J.
Chem. Rev.
2006,
106:
5387
For one-pot double elimination protocols, see:
6c
Orita A.
Nakano T.
Yokoyama T.
Babu G.
Otera J.
Chem. Lett.
2004,
33:
1298
6d
Orita A.
Miyamoto K.
Nakashima M.
Ye F.
Otera J.
Adv. Synth. Catal.
2004,
346:
767
6e
Ye F.
Orita A.
Yaruva J.
Hamada T.
Otera J.
Chem. Lett.
2004,
33:
528
6f
Ye F.
Orita A.
Doumoto A.
Otera J.
Tetrahedron
2003,
59:
5635
6g
Orita A.
Ye F.
Doumoto A.
Otera J.
Chem. Lett.
2003,
32:
104
6h
Orita A.
An D.-L.
Nakano T.
Yaruva J.
Ma N.
Otera J.
Chem. Eur. J.
2002,
8:
2005
6i
Orita A.
Hasegawa D.
Nakano T.
Otera J.
Chem. Eur. J.
2002,
8:
2000
6j
Orita A.
Alonso E.
Yaruva J.
Otera J.
Synlett
2000,
1333
6k
Orita A.
Yoshioka N.
Struwe P.
Braier A.
Beckmann A.
Otera J.
Chem. Eur. J.
1999,
5:
1355
For one-shot double elimination protocols, see:
6l
Shao G.
Orita A.
Nishijima K.
Ishimaru K.
Takezaki M.
Wakamatsu K.
Gleiter R.
Otera J.
Chem. Asian J.
2007,
2:
489
6m
Orita A.
Taniguchi H.
Otera J.
Chem. Asian J.
2006,
1:
430
7a
Shao G.
Orita A.
Nishijima K.
Ishimaru K.
Takezaki M.
Wakamatsu K.
Otera J.
Chem. Lett.
2006,
35:
1284
7b
Oyamada T.
Shao G.
Uchiuzou H.
Nakanotani H.
Orita A.
Otera J.
Yahiro M.
Adachi C.
Jpn. J. Appl. Phys.
2006,
45:
L1331
7c
Shao G.
Orita A.
Taniguchi H.
Ishimaru K.
Otera J.
Synlett
2007,
231
7d
Shao G.
Orita A.
Nishijima K.
Ishimaru K.
Takezaki M.
Wakamatsu K.
Gleiter R.
Otera J.
Chem. Asian J.
2007,
2:
489
7e
Fenenko L.
Shao G.
Orita A.
Yahiro M.
Otera J.
Svechnikov S.
Adachi C.
Chem. Commun.
2007,
2278
For example:
8a
Anderson S.
Chem. Eur. J.
2001,
7:
4706
8b
Yamaguchi Y.
Tanaka T.
Kobayashi S.
Wakamiya T.
Matsubara Y.
Yoshida Z.
J. Am. Chem. Soc.
2005,
127:
9332
8c
Yamaguchi Y.
Kobayashi S.
Wakamiya T.
Matsubara Y.
Yoshida Z.
Angew. Chem. Int. Ed.
2005,
44:
7040
8d
Yamaguchi Y.
Ochi T.
Wakamiya T.
Matsubara Y.
Yoshida Z.
Org. Lett.
2006,
8:
717
8e
Shi Z.-F.
Wang L.-J.
Wang H.
Cao X.-P.
Zhang H.-L.
Org. Lett.
2007,
9:
595
9 UV-Vis and photofluorescence were recorded with JASCO V-560 and JASCO FP-6500 instruments at r.t., respectively. Absolute quantum yields of photofluorescence were recorded by an integration sphere system (Hamamatsu photonics C9920-02).
10
Tamao K.
Yamaguchi S.
Shiro M.
J. Am. Chem. Soc.
1994,
116:
11715
11
Representative Experimental Procedure:
(i) Preparation of 3e: To a THF solution (40 mL) of phenyl 4-(trimethylsilylethynyl)phenylmethyl sulfone (1.57 g, 4.8 mmol) was added LiHMDS (4.8 mL, 1.0 M THF solution, 4.8 mmol) at -78 °C, and the mixture was stirred for 0.5 h. To this solution was added a THF solution (5 mL) of 2,5-diethyl-4-(4-methoxyphenylethynyl)benzaldehyde (1.16 g, 4.0 mmol), and the mixture was stirred for 1 h. After ClP(O)(OEt)2 (0.694 mL, 4.8 mmol) had been added, the mixture was stirred at r.t. for 2 h. After LiHMDS (20.0 mL, 1.0 M THF solution, 20.0 mmol) had been added at -78 °C, the reaction mixture was stirred at -78 °C for 1 h and then at 30 °C for 17 h. After usual workup with EtOAc and aq NH4Cl, the organic layer was dried over MgSO4 and filtered. The solvents were evaporated, and the residue was chromatographed (CH2Cl2-hexane, 3:7) to give 3e (1.73 g, 94%) as a colorless solid. 1H NMR (500 MHz, CDCl3): δ = 0.26 (s, 9 H), 1.29 (t, J = 7.6 Hz, 6 H), 2.81-2.86 (m, 4 H), 3.82 (s, 3 H), 6.87 (d, J = 8.8 Hz, 2 H), 7.36 (s, 2 H), 7.45 (s, 4 H), 7.46 (s, 1 H), 7.48 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = -0.12, 14.6, 14.7, 27.1, 27.2, 55.1, 86.9, 90.3, 93.5, 94.3, 96.2, 104.7, 114.0, 115.5, 121.7, 122.8, 123.1, 123.6, 131.2, 131.3, 131.5, 131.8, 132.9, 143.1, 143.3, 159.6. Other TMS-protected phenylene ethynylenes 3c and 3d were prepared similarly from the corresponding sulfones and aldehydes by one-shot double elimination process.6l,m
(ii) Preparation of 4e: A 100-mL flask was charged with 3e (1.73 g, 3.76 mmol), K2CO3 (2.6 g, 18.8 mmol), THF (20 mL) and MeOH (20 mL). The mixture was stirred at r.t. for 2 h. After usual workup with EtOAc and aq NH4Cl, the organic layer was dried over MgSO4 and filtered. The solvents were evaporated, and the residue was chromatographed (CH2Cl2-hexane, 3:7) to give 4e (1.35g, 93%) as a colorless solid. 1H NMR (500 MHz, CDCl3): δ = 1.27-1.31 (m, 6 H), 2.80-2.86 (m, 4 H), 3.16 (s, 1 H), 3.77 (s, 3 H), 6.84 (d, J = 8.6 Hz, 2 H), 7.36 (s, 2 H), 7.45 (s, 5 H), 7.47 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 14.6, 14.7, 27.1, 30.2, 55.2, 78.9, 83.3, 86.8, 90.3, 93.3, 94.4, 114.0, 115.4, 121.6, 121.7, 123.1, 123.9, 131.3, 131.4, 131.5, 132.0, 132.9, 143.2, 143.4, 159.6.
(iii) Preparation of 10a: A solution of lithium naph-thalenide was prepared by stirring a mixture of naphthalene (1.17 g, 9.16 mmol) and lithium (63.6 mg, 9.16 mmol) in THF (8 mL) at r.t. for 3 h. To the above lithium naph-thalenide solution, diethylbis(phenylethynyl)silane (0.66 g, 2.29 mmol) in THF (8 mL) was added over 15 min, and the mixture was stirred at r.t. for 15 min. ZnCl2 (1.56 g, 11.4 mmol) in THF (12 mL) was added at -20 °C, and the mixture was stirred for 20 min. After N-bromosuccinimide (1.01 g, 5.72 mmol) had been added at -78 °C, the flask was shielded from light by covering with foil and stirred at -78 °C for 1 h. After usual workup with Et2O and aq NH4Cl, the organic layer was washed with half-saturated Na2S2O3 solution, dried over MgSO4 and filtered. The solvents were evapor-ated, and the crude dibromosilole 7 was used for the next step without further purification. To a solution of ZnCl2 (0.625 g, 4.58 mmol) in THF (8 mL) and Et3N (1.85 g, 18.3 mmol) were added dibromosilole 7 in THF (4 mL) and 4e (1.779 g, 4.58 mmol) in THF (4 mL). After Pd(Ph3P)4 (0.264 g, 0.22 mmol) had been added, the mixture was stirred at 65 °C for 13 h. After evaporation of the solvents, the residue was chromatographed (EtOAc-hexane, 1:9) to give 10a (2.82 g, 58%) as a yellow solid. 1H NMR (500 MHz, CDCl3)): δ = 1.13-1.31 (m, 22 H), 2.84 (m, 8 H), 3.84 (s, 6 H), 6.90 (d, J = 8.5 Hz, 4 H), 7.19-7.24 (m, 14 H), 7.36 (s, 4 H), 7.42 (d, J = 8.0 Hz, 4 H), 7.48 (d, J = 9.0 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 2.6, 7.1, 14.6, 14.7, 27.1, 55.2, 86.8, 90.2, 92.7, 93.8, 94.2, 99.6, 114.0, 115.4, 121.8, 122.2, 122.7, 122.9, 124.2, 127.2, 127.5, 129.3, 131.2, 131.4 (2), 132.9, 137.5, 143.1, 143.3, 159.6, 162.7. ESI-MS: m/z [M + H] calcd for C78H67O2Si: 1063.49; found: 1063.1.