Planta Med 2007; 73(12): 1235-1240
DOI: 10.1055/s-2007-990216
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Reverse Pharmacognosy: Identifying Biological Properties for Plants by Means of their Molecule Constituents: Application to Meranzin

Quoc-Tuan Do1 , Cécile Lamy2 , Isabelle Renimel2 , Nancy Sauvan2 , Patrice André2 , Franck Himbert1 , Luc Morin-Allory3 , Philippe Bernard1
  • 1GREENPHARMA S. A., Orléans, France
  • 2GIE LVMH RECHERCHE, 45804 Saint Jean de Braye cedex, France
  • 3Institut de Chimie Organique et Analytique, Orléans, France
Further Information

Publication History

Received: June 22, 2007 Revised: July 16, 2007

Accepted: July 19, 2007

Publication Date:
13 September 2007 (online)

Abstract

Reverse pharmacognosy aims at finding biological targets for natural compounds by virtual or real screening and identifying natural resources that contain the active molecules. We report herein a study focused on the identification of biological properties of meranzin, a major component isolated from Limnocitrus littoralis (Miq.) Swingle. Selnergy™, an in silico biological profiling software, was used to identify putative binding targets of meranzin. Among the 400 screened proteins, 3 targets were selected: COX1, COX2 and PPARγ. Binding tests were realised for these 3 protein candidates, as well as two negative controls. The predictions made by Selnergy were consistent with the experimental results, meaning that these 3 targets can be modulated by an extract containing this compound in a suitable concentration. These results demonstrate that reverse pharmacognosy and its inverse docking component is a powerful tool to identify biological properties for natural molecules and hence for plants containing these compounds.

References

  • 1 Bruneton J. Pharmacognosie, Phytochimie, Plantes Médicinales. Paris; Lavoisier 1993: viii.
  • 2 Do Q T, Bernard P. Pharmacognosy and reverse pharmacognosy : a new concept for accelerating natural drug discovery.  IDrugs. 2004;  7 1017-27.
  • 3 Harrigan G G, Brackett D J, Boros L G. Medicinal chemistry, metabolic profiling and drug target discovery: a role for metabolic profiling in reverse pharmacology and chemical genetics.  Mini Rev Med Chem. 2005;  5 13-20.
  • 4 Shoichet B K, Stroud R M, Santi D V, Kuntz I D, Perry K M. Structure-based discovery of inhibitors of thymidylate synthase.  Science.. 1993;  259 1445-50.
  • 5 Rollinger J M, Haupt S, Stuppner H, Langer T. Combining ethnopharmacology and virtual screening for lead structure discovery: COX-inhibitors as application example.  J Chem Inf Comput Sci. 2004;  44 480-8.
  • 6 Liu H, Li Y, Song M, Tan X, Cheng F, Zheng S. et al . Structure-based discovery of potassium channel blockers from natural products: virtual screening and electrophysiological assay testing.  Chem Biol. 2003;  10 1103-13.
  • 7 Bernard P, Scior T, Didier B, Hibert M, Berthon J Y. Ethnopharmacology and bioinformatic combination for leads discovery: application to phospholipase A(2) inhibitors.  Phytochemistry. 2001;  58 865-74.
  • 8 Chen Y Z, Zhi D G. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule.  Proteins. 2001;  43 217-26.
  • 9 Paul N, Kellenberger E, Bret G, Muller P, Rognan D. Recovering the true targets of specific ligands by virtual screening of the protein data bank.  Proteins. 2004;  54 671-80.
  • 10 Do Q T, Renimel I, Andre P, Lugnier C, Muller C D, Bernard P. Reverse pharmacognosy: application of selnergy, a new tool for lead discovery. The example of epsilon-viniferin.  Curr Drug Discov Technol. 2005;  2 161-7.
  • 11 Tripos Inc 1699 South Hanley Rd.; St. Louis, Missouri, 63 144, USA.;
  • 12 Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H. et al . The protein data bank.  Nucleic Acids Res. 2000;  28 235-42.
  • 13 Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm.  J Mol Biol. 1996;  261 470-89.
  • 14 Pearlman R S. CONCORD® 4.0.7A, ”Concord User's Manual,”. distributed by Tripos Inc St. Louis, MO.;
  • 15 Press W H, Flannery B P, Teukolsky S A, Vetterling W T. Simplex. Numerical recipes in C, the art of scientific computing. Cambridge; University Press 1988: 312-27.
  • 16 Powell M JD. An efficient method for finding the minimum of a function of several variables without calculating derivatives.  Comp J. 1964;  7 155-62.
  • 17 Maclouf J, Grassi J, Pradelles P. Development of enzyme-immunoassay techniques for the measurement of eicosanoids. In: Walden TL, Hughes HN; editors Prostaglandin and lipid metabolism in radiation injury. New York; Plenum Press 1987: 355-64.
  • 18 Bieth J, Spiess B, Wermuth C G. The synthesis and analytical use of a highly sensitive and convenient substrate of elastase.  Biochem Med. 1974;  11 350-7.
  • 19 Gilde A J, van der Lee K A, Willemsen P H, Chinetti G, van der Leij F R, van der Vusse G J. et al . Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism.  Circ Res. 2003;  92 518-24.
  • 20 Garavito R M, Picot D, Loll P J. Preliminary X-ray investigations into NSAID-binding to cyclooxygenase-1.  Am J Ther. 1995;  2 611-5.
  • 21 Gierse J K, McDonald J J, Hauser S D, Rangwala S H, Koboldt C M, Seibert K. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors.  J Biol Chem. 1996;  271 15 810-4.
  • 22 Xu H E, Lambert M H, Montana V G, Plunket K D, Moore L B, Collins J L. et al . Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors.  Proc Natl Acad Sci U S A. 2001;  98 13 919-24.
  • 23 Zanotti G, Berni R. Plasma retinol-binding protein: structure and interactions with retinol, retinoids, and transthyretin.  Vitam Horm. 2004;  69 271-95.
  • 24 Zoraghi R, Corbin J D, Francis S H. Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity.  J Biol Chem. 2006;  281 5553-8.
  • 25 Mattos C, Rasmussen B, Ding X, Petsko G A, Ringe D. Analogous inhibitors of elastase do not always bind analogously.  Nat Struct Biol. 1994;  1 55-8.
  • 26 Fiorucci S, Meli R, Bucci M, Cirino G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase.  A new avenue in anti-inflammatory therapy? Biochem Pharmacol. 2001;  62 1433-8.
  • 27 Hito C, Furukawa H. Constituents of Murraya exotica L. Structure elucidation of new coumarins.  Chem Pharm Bull. 1987;  35 4277-85.

Dr Philippe Bernard

GREENPHARMA S. A.

3 allée du Titane

45100 Orléans

France

Phone: +33-2-3825-9980

Fax: +33-2-3825-9965

Email: philippe.bernard@greenpharma.com