Subscribe to RSS
DOI: 10.1055/s-2007-990304
© Georg Thieme Verlag KG Stuttgart · New York
Statistical Fluctuations in Attractor Networks Related to Schizophrenia
Publication History
Publication Date:
17 December 2007 (online)

Abstract
We present a hypothesis of how the positive, negative, and cognitive symptoms of schizophrenia could be related to alterations in the stability of cortical networks which lead to a reduced signal-to-noise ratio. We analyze using integrate-and-fire simulations of attractor networks how some of the symptoms of schizophrenia could be related to a reduced depth of basins of attraction, produced by for example a decrease in the NMDA receptor conductances, and to statistical fluctuations caused by stochastic spike firing of neurons. Both of these processes contribute to instability in short term memory, attentional, and semantic neuronal networks. The cognitive symptoms such as distractibility, working memory deficits or poor attention could be caused by this instability of attractor states in prefrontal cortical networks. Lower firing rates are also produced, and in the orbitofrontal and anterior cingulate cortex could account for the negative symptoms including a reduction of emotions. If the decrease in NMDA conductances, and the statistical fluctuations, are combined with a reduction of GABA conductances, this causes the network to switch between the attractor states, and to jump from spontaneous activity into one of the attractors. We relate this to the positive symptoms of schizophrenia including delusions, paranoia, and hallucinations, which may arise because the basins of attraction are shallow and there is instability in temporal lobe semantic memory networks, leading thoughts to move too freely round the attractor energy landscape.
References
- 1 Abeles M.
Corticonics . New York: Cambridge University Press 1991MissingFormLabel - 2
Bender W, Albus M, Moller HJ, Tretter F.
Towards systemic theories in biological psychiatry.
Pharmacopsychiatry.
2006;
39
((Suppl 1))
S4-S9
MissingFormLabel
- 3 Braitenberg V, Schütz A.
Anatomy of the Cortex . Springer Verlag, Berlin 1991MissingFormLabel - 4
Brunel N, Wang X.
Effects of neuromodulation in a cortical network model of object working memory dominated
by recurrent inhibition.
Journal of Computational Neuroscience.
2001;
11
63-85
MissingFormLabel
- 5
Capuano B, Crosby IT, Lloyd EJ.
Schizophrenia: genesis, receptorology and current therapeutics.
Curr Med Chem.
2002;
9
((5))
521-548
MissingFormLabel
- 6
Carlsson A.
The neurochemical circuitry of schizophrenia.
Pharmacopsychiatry.
2006;
39
((Suppl 1))
S10-S14
MissingFormLabel
- 7
Castner SA, Williams GV, Goldman-Rakic PS.
Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1
receptor stimulation.
Science.
2000;
287
((5460))
2020-2022
MissingFormLabel
- 8
Cohen JD, Servan-Schreiber D.
Context, cortex, and dopamine: a connectionist approach to behavior and biology in
schizophrenia.
Psychol Rev.
1992;
99
((1))
45-77
MissingFormLabel
- 9
Coyle JT, Tsai G, Goff D.
Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia.
Ann N Y Acad Sci.
2003;
1003
318-327
MissingFormLabel
- 10 Dayan P, Abbott LF.
Theoretical Neuroscience . MIT Press, Cambridge, MA 2001MissingFormLabel - 11
Deco G.
A dynamical model of event-related fMRI signals in prefrontal cortex: predictions
for schizophrenia.
Pharmacopsychiatry.
2006;
39
((Suppl 1))
S65-S67
MissingFormLabel
- 12
Deco G, Rolls ET.
Attention and working memory: a dynamical model of neuronal activity in the prefrontal
cortex.
European Journal of Neuroscience.
2003;
18
2374-2390
MissingFormLabel
- 13
Deco G, Rolls ET.
Attention, short term memory, and action selection: a unifying theory.
Progress in Neurobiology.
2005;
76
236-256
MissingFormLabel
- 14
Durstewitz D.
A few important points about dopamine's role in neural network dynamics.
Pharmacopsychiatry.
2006;
39
((Suppl 1))
S72-S75
MissingFormLabel
- 15
Durstewitz D, Seamans JK.
The computational role of dopamine D1 receptors in working memory.
Neural Netw.
2002;
15
((4-6))
561-572
MissingFormLabel
- 16
Durstewitz D, Seamans JK, Sejnowski TJ.
Neurocomputational models of working memory.
Nat Neurosci.
2000;
3
((Suppl 1))
184-191
MissingFormLabel
- 17
Goldman-Rakic P.
Working memory dysfunction in schizophrenia.
Journal of Neuropsychology and Clinical Neuroscience.
1994;
6
348-357
MissingFormLabel
- 18
Goldman-Rakic PS.
The physiological approach: functional architecture of working memory and disordered
cognition in schizophrenia.
Biol Psychiatry.
1999;
46
((5))
650-661
MissingFormLabel
- 19
Green MF.
What are the functional consequences of neurocognitive deficits in schizophrenia?.
Am J Psychiatry.
1996;
153
((3))
321-330
MissingFormLabel
- 20
Hoffman RE.
Attractor neural networks and psychotic disorders.
Psychiatric Annals.
1992;
22
((3))
119-124
MissingFormLabel
- 21
Hoffman RE, MacGlashan TH.
Using a speech perception neural network computer simulation to contrast neuroanatomic
versus neuromodulatory models of auditory hallucinations.
Pharmacopsychiatry.
2006;
39
((Suppl 1))
S54-S64
MissingFormLabel
- 22
Hopfield JJ.
Neural networks and physical systems with emergent collective computational abilities.
Proc. Nat. Acad. Sci. USA.
1982;
79
2554-2558
MissingFormLabel
- 23
Koch KW, Fuster JM.
Unit activity in monkey parietal cortex related to haptic perception and temporary
memory.
Exp. Brain Res.
1989;
76
292-306
MissingFormLabel
- 24
Lewis DA, Hashimoto T, Volk DW.
Cortical inhibitory neurons and schizophrenia.
Nat Rev Neurosci.
2005;
6
((4))
312-324
MissingFormLabel
- 25
Liddle PF.
The symptoms of chronic schizophrenia: a re-examination of the positive-negative dichotomy.
British Journal of Psychiatry.
1987;
151
145-151
MissingFormLabel
- 26
Loh M, Deco G.
Cognitive flexibility and decision making in a model of conditional visuomotor associations.
European Journal of Neuroscience.
2005;
22
((11))
2927-2936
MissingFormLabel
- 27
Moller HJ.
Antipsychotic and antidepressive effects of second generation antipsychotics: two
different pharmacological mechanisms?.
Eur Arch Psychiatry Clin Neurosci.
2005;
255
((3))
190-201
MissingFormLabel
- 28
Mueser KT, MacGurk SR.
Schizophrenia.
Lancet.
2004;
363
((9426))
2063-2072
MissingFormLabel
- 29 Rolls ET.
Emotion Explained . Oxford University Press, Oxford 2005MissingFormLabel - 30 Rolls ET. The neurophysiology and functions of the orbitofrontal cortex. In: Zald DH, Rauch SL, editors,
The Orbitofrontal Cortex . Oxford University Press, Oxford 2006: 95-124MissingFormLabel - 31 Rolls ET, Deco G.
Computational Neuroscience of Vision . Oxford University Press, Oxford 2002MissingFormLabel - 32 Rolls ET, Treves A.
Neural Networks and Brain Function . Oxford University Press, Oxford 1998MissingFormLabel - 33
Rosenblatt F.
The perceptron: A probabillstic model for information storage and organization in
the brain.
Psychological Review.
1958;
65
386-408
MissingFormLabel
- 34
Seamans JK, Gorelova N, Durstewitz D, Yang CR.
Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal
neurons.
J Neurosci.
2001;
21
((10))
3628-3638
MissingFormLabel
- 35
Seamans JK, Yang CR.
The principal features and mechanisms of dopamine modulation in the prefrontal cortex.
Prog Neurobiol.
2004;
74
((1))
1-58
MissingFormLabel
- 36
Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, MacKnight GS. et al .
Psychosis pathways converge via D2 high dopamine receptors.
Synapse.
2006;
60
((4))
319-346
MissingFormLabel
- 37
Seeman P, Weinshenker D, Quirion R, Srivastava LK, Bhardwaj SK, Grandy DK. et al .
Dopamine supersensitivity correlates with D2 High states, implying many paths to psychosis.
Proc Natl Acad Sci USA.
2005;
102
((9))
3513-3518
MissingFormLabel
- 38
Softky WR, Koch C.
The highly irregular firing of cortical cells is inconsistent with temporal integration
of random EPSPs.
J Neurosci.
1993;
13
((1))
334-350
MissingFormLabel
- 39
Stevens JR.
An anatomy of schizophrenia?.
Arch Gen Psychiatry.
1973;
29
((2))
177-189
MissingFormLabel
- 40
Trantham-Davidson H, Neely LC, Lavin A, Seamans JK.
Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition
in prefrontal cortex.
J Neurosci.
2004;
24
((47))
10652-10659
MissingFormLabel
- 41
Tretter F, Scherer J.
Schizophrenia, neurobiology and the methodology of systemic modeling.
Pharmacopsychiatry.
2006;
39
((Suppl 1))
S26-S35
MissingFormLabel
- 42
Wang XJ.
Probabilistic decision making by slow reverberation in cortical circuits.
Neuron.
2002;
36
((5))
955-968
MissingFormLabel
- 43
Wang XJ.
Synaptic reverberation underlying mnemonic persistent activity.
Trends Neurosci.
2001;
24
((8))
455-463
MissingFormLabel
- 44
Wilson F, Scalaidhe S, Goldman-Rakic P.
Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal
neurons in prefrontal cortex.
Proceedings of the National Academy of Science.
1994;
91
4009-4013
MissingFormLabel
- 45
Winterer G, Coppola R, Goldberg TE, Egan MF, Jones DW, Sanchez CE. et al .
Prefrontal broadband noise, working memory, and genetic risk for schizophrenia.
Am J Psychiatry.
2004;
161
((3))
490-500
MissingFormLabel
- 46
Winterer G, Egan MF, Kolachana BS, Goldberg TE, Coppola R, Weinberger DR.
Prefrontal electrophysiologic “noise” and catechol-O-methyltransferase genotype in
schizophrenia.
Biological Psychiatry.
2006;
60
((6))
578-584
MissingFormLabel
- 47
Winterer G, Musso F, Beckmann C, Mattay V, Egan MF, Jones DW. et al .
Instability of prefrontal signal processing in schizophrenia.
Am J Psychiatry.
2006;
163
((11))
1960-1968
MissingFormLabel
- 48
Winterer G, Weinberger DR.
Genes, dopamine and cortical signal-to-noise ratio in schizophrenia.
Trends Neurosci.
2004;
27
((11))
683-690
MissingFormLabel
- 49
Winterer G, Ziller M, Dorn H, Frick K, Mulert C, Wuebben Y. et al .
Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking during information
processing.
Clin Neurophysiol.
2000;
111
((5))
837-849
MissingFormLabel
Correspondence
Dr. M. Loh
Universitat Pompeu Fabra
Computational Neuroscience
Passeig de Circumval.lació 8
08003 Barcelona
Spain
Phone: +34/93/542 23 62
Fax: +34/93/542 24 51
Email: marco.loh@upf.edu