Abstract
2-(Propa-1,2-dienyl)-, 2-(buta-1,2-dienyl)-, and 2-(3-methylbuta-1,2-dienyl)-substituted 5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxides 1a-c react readily upon heating with thiols under catalyst-free, base-free, and solvent-free conditions to give sulfanyl-substituted phosphonates. The reaction undergoes to essential completion within 15 minutes under microwave radiation. While 1a ,b react with 4-chlorothiophenol to afford both 2-[2-(4-chlorophenylsulfanyl)prop-1-enyl]- 12 and 2-[2-(4-chlorophenylsulfanyl)prop-2-enyl]-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxides 13 , 1c gives 2-[2-(4-chlorophenylsulfanyl)-3-methylbut-2-enyl]-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (13d ) regioselectively. Molecular oxygen undergoes a novel reaction with the allene 1c to give propargylic alcohol 2-(3-hydroxy-3-methylbut-1-ynyl)-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (16 ) via the corresponding hydroperoxide; the structures of these were confirmed by X-ray crystallography. The synthetic utility of the sulfanyl-substituted allyphosphonate 13d in the Horner-Wadsworth-Emmons reaction to afford synthetically valuable sulfanyl-substituted buta-1,3-dienes and a conjugated triene is demonstrated.
Key words
allenes - thiol addition - oxygenation - Horner-Wadsworth-Emmons reaction - allenylphosphonates
References
1a
Yamamoto Y.
Radhakrishnan U.
Chem. Soc. Rev.
1999,
28:
199
1b
Zimmer R.
Dinesh CU.
Nandanan E.
Khan FA.
Chem. Rev.
2000,
100:
3067
1c
Lu X.
Zhang C.
Xu Z.
Acc. Chem. Res.
2001,
34:
535
1d
Bates RW.
Satcharoen V.
Chem. Soc. Rev.
2002,
31:
12
1e
.
Xiong H.
Hsung RP.
Acc. Chem. Res.
2003,
36:
773
1f
Ma S.
Acc. Chem. Res.
2003,
36:
701
1g
Hoffmann-Röder A.
Krause N.
Angew. Chem. Int. Ed.
2004,
43:
1196
1h
Ma S.
Chem. Rev.
2005,
105:
2829
2a
Chang H.-M.
Cheng CH.
J. Org. Chem.
2000,
65:
1767
2b
Huang T.-H.
Chang H.-M.
Wu MY.
Cheng CH.
J. Org. Chem.
2002,
67:
99
2c
Friese JC.
Krause S.
Schäfer HJ.
Tetrahedron Lett.
2002,
43:
2683
2d
Chang Wu M.-S.
Rayabarapu DK.
Cheng CH.
J. Am. Chem. Soc.
2003,
125:
12426
2e
Oh CH.
Ahn TW.
Raghava Reddy V.
Chem. Commun.
2003,
2622
2f
Ma S.
Jiao N.
Ye L.
Chem. Eur. J.
2003,
9:
6049
2g
Fürmeier S.
Lau MML.
Jie MSFLK.
Lützen A.
Metzger JO.
Eur. J. Org. Chem.
2003,
4874
2h
Fleming SA.
Carroll SM.
Hirshi J.
Liu R.
Pace JL.
Redd JT.
Tetrahedron Lett.
2004,
45:
3341
2i
Hopkins CD.
Malinakova HC.
Org. Lett.
2004,
6:
2221
2j
Silvetri MA.
Bromfield DC.
Lepore SE.
J. Org. Chem.
2005,
70:
8239
2k
Fu C.
Ma S.
Org. Lett.
2005,
7:
1707
3a
Schuster HF.
Coppola GM.
Allenes in Organic Synthesis
John Wiley & Sons;
New York:
1984.
p.247-252
3b
Alabugin IV.
Brei VK.
Russ. Chem. Rev. (Engl. Transl.)
1997,
66:
205
3c
Patois C.
Richard L.
Savignac P.
J. Chem. Soc., Perkin Trans. 1
1990,
1577
3d
Zapata AJ.
Gu Y.
Hammond GB.
J. Org. Chem.
2000,
65:
227
3e
Zhao CQ.
Han LB.
Tanaka M.
Organometallics
2000,
19:
4196
3f
Rubin M.
Markov J.
Chuprakov S.
Wink DJ.
Gevorgyan V.
J. Org. Chem.
2003,
68:
6251
3g
Wu Z.
Huang X.
Synlett
2005,
526
3h
Nishimura T.
Hirabayashi S.
Hayashi T.
J. Am. Chem. Soc.
2006,
126:
2556
3i
Ma S.
Guo H.
Yu F.
J. Org. Chem.
2006,
71:
6634
3j
Chakravarty M.
Kumara Swamy KC.
J. Org. Chem.
2006,
71:
9128
4a
Palacios F.
Aparicio D.
García J.
Tetrahedron
1996,
52:
9609
4b
Zapata AJ.
Gu Y.
Hammond GB.
J. Org. Chem.
2000,
65:
227
4c
Johnson JS.
Bergman RG.
J. Am. Chem. Soc.
2001,
123:
2923
5
Kumara Swamy KC.
Balaraman E.
Satish Kumar N.
Tetrahedron
2006,
62:
10152
6a
Lu X.
Zhang C.
Xu Z.
Acc. Chem. Res.
2001,
34:
535
6b
Zhang C.
Lu X.
Synlett
1995,
645
7a
Jacobs TL.
Illingworth GE.
J. Org. Chem.
1963,
28:
2692
7b
Pasto DJ.
Warren SE.
Morrison MA.
J. Org. Chem.
1981,
46:
2837
7c
Ogawa A.
Kawakami J.-i.
Sonoda N.
Hirao T.
J. Org. Chem.
1996,
61:
4161
8a
Pudovik AN.
Khusainova NG.
Abdulina TA.
J. Gen. Chem. USSR (Engl. Transl.)
1967,
37:
809
8b
Khusainova NG.
Mostovaya OA.
Berdnikov EA.
Efremov YY.
Sharafutdinova DR.
Cherkasov RA.
Russ. Chem. Bull. (Engl. Transl.)
2004,
53:
2253
8c
Khusainova NG.
Mostovaya OA.
Berdnikov EA.
Cherkasov RA.
Russ. Chem. Bull. (Engl. Transl.)
2003,
52:
1033
9a
Muthiah C.
Praveen Kumar K.
Aruna Mani C.
Kumara Swamy KC.
J. Org. Chem.
2000,
65:
3733
9b
Muthiah C.
Senthil Kumar K.
Vittal JJ.
Kumara Swamy KC.
Synlett
2002,
1787
9c
Kumaraswamy S.
Kommana P.
Satish Kumar N.
Kumara Swamy KC.
Chem. Commun.
2002,
40
9d
Chakravarty M.
Srinivas B.
Muthiah C.
Kumara Swamy KC.
Synthesis
2003,
2368
9e
Balaraman E.
Kumara Swamy KC.
Synthesis
2004,
3037
9f
Satish Kumar N.
Praveen Kumar K.
Pavan Kumar KVP.
Kommana P.
Vittal JJ.
Kumara Swamy KC.
J. Org. Chem.
2004,
69:
1880
9g
Kumara Swamy KC.
Kumaraswamy S.
Senthil Kumar K.
Muthiah C.
Tetrahedron Lett.
2005,
46:
3347
9h
Kumara Swamy KC.
Praveen Kumar K.
Bhuvan Kumar NN.
J. Org. Chem.
2006,
71:
1002
9i
Kumara Swamy KC.
Satish Kumar N.
Acc. Chem. Res.
2006,
39:
324
9j
Bhuvan Kumar NN.
Chakravarty M.
Kumara Swamy KC.
New J. Chem.
2006,
30:
1614
10 The 1 H NMR spectrum of this mixture showed peaks at δ = 3.40 (d, J = 22.0 Hz), in addition to those for 12a and 1a . There was also an additional minor peak in the initial stages in the 31 P NMR at δ = 23.9 (unassigned).
11 Compound 15 was more difficult to obtain in a pure form, probably because of conversion into 16 .
12 When we tried to separate this compound from 5,5-diethyl-2-(3-methylbuta-1,2-dienyl)-1,3,2-dioxaphosphinane 2-oxide using column chromatography, a small quantity of an additional species [δ(P) -12.2] was noticed in a few fractions.
13
Sander W.
Patyk A.
Angew. Chem., Int. Ed. Engl.
1987,
26:
475 ; and references cited therein
14 Such trienes are perhaps useful in cyclization reactions, see: Murahashi T.
Nakashima H.
Nagai T.
Mino Y.
Okuno T.
Jalil MA.
Kurosawa H.
J. Am. Chem. Soc.
2006,
128:
4377 ; and references cited therein
15
Zhijie N.
Padwa A.
Synlett
1992,
869
16a
Organic Chemistry of Sulfur
Oae S.
Plenum;
New York:
1977.
16b
Bernardi F.
Mangini E.
Organic Sulfur Chemistry: Theoretical and Experimental Advances
Elsevier;
Amsterdam:
1985.
17 IR (KBr): 3399, 2928, 1570, 1335, 1206, 1057, 1005 cm-1 ; 1 H NMR (400 MHz, CDCl3 ): δ = 0.99 and 1.10 (2 s, 6 H, 2 CH
3 ), 2.01-2.06 [2 m due to coupling to phosphorus and CH2 with J <5.0 Hz, 6 H, =C(CH
3 )2 ], 3.34 (dd, J ˜4.0 Hz, J ˜20.6 Hz, 2 H, PCH
2 ), 3.79-4.95 (m, 9 H, CH
2 OH, CH CH2 OH, 2 CH OH, OCH
2 ), 5.90 (d, J ˜7.0 Hz, OCH N of ribose), 8.13 (s, 1 H, nucleobase-H ), 8.62 (s, 1 H, Nucleobase-H ); LC-MS showed a peak at m /z 503.
18
Perrin DD.
Armarego WLF.
Perrin DR.
Purification of Laboratory Chemicals
Pergamon;
Oxford:
1986.
19a
Satish Kumar N.
Ph.D. Thesis
University of Hyderabad;
India:
2004.
19b
Guillemin JC.
Savignac P.
Denis JM.
Inorg. Chem.
1991,
30:
2170
20a
Sheldrick GM.
SADABS, Siemens Area Detector Absorption Correction
University of Göttingen;
Germany:
1996.
20b
Sheldrick GM.
SHELXTL NT Crystal Structure Analysis Package
version 5.10:
Bruker AXS, Analytical X-ray System;
WI USA:
1999.