RSS-Feed abonnieren
DOI: 10.1055/s-2007-990842
N-Fluorobenzenesulfonimide [(PhSO2)2NF] - A Neutral N-F-Containing Electrophilic Fluorinating Agent
Publikationsverlauf
Publikationsdatum:
12. Oktober 2007 (online)
Biographical Sketches
Introduction
N-Fluorobenzenesulfonimide [NFSI] is a stable crystalline solid that easy to handle, non-hygroscopic, soluble in most common ethereal and chlorinated solvents, and commercially available. It is a neutral N-F-containing electrophilic fluorinating agent that permits the incorporation of fluorine into neutral and carbanionic nucleophiles ranging from very reactive organometallic species to slightly activated aromatic compounds. [1]
N-Fluorobenzenesulfonimide can be employed in the preparation of aryl (difluoromethylenephosphonates), [2] 20-deoxy-20-fluorocamptothecin, [3] N-fluoro sulfonamides, [4] 2-amino-5-fluorothiazole hydrochloride [5] and benzylic α,α-difluoronitriles, -tetrazoles, and -sulfonates. [6] When NFSI was associated with chiral palladium complexes an efficient method to catalytic enantioselective fluorination of β-keto esters, [7] and α-cyano acetates [8] was presented.
Abstracts
The use of imidazolidinone 1 as the asymmetric catalyst has been found to mediate the fluorination of aldehyde substrates with N-fluorobenzenesulfonimide serving as the electrophilic source of fluorine. A wide range of functional groups, including olefins, esters, amines, carbamates, and aryl rings, can be readily tolerated on the aldehydic substrate. [9] | |
Various N-alkylimines derived from acetophenones were successfully monofluorinated using N-fluorosulfonimide (NFSI) in a mixture of acetonitrile and DMF at 0 °C. Alternatively the same procedure without DMF gave rise to diflourinated imines when performed at room temperature. The obtained α- and α,α-difluorinated imines were subsequently reduced to give the corresponding β-fluoro- and β ,β-difluoroamines in good yield. [10] | |
NFSI was used for synthesis of novel 3,5-difluoropyridine-4-carboxaldehyde. Difluorination was achieved through the reaction of 3,5-dibromo-1,3-dioxolane pyridine with n-butyllithium followed by N-fluorobenzenesulfonimide at -120 °C in good yield. [11] | |
Reaction of the in situ generated purine C-8 carbanion of a protected 5′-noraristeromycin derivative with N-fluorobenzenesulfonimide gave 8-phenylsulfonyl-5′-noraristeromycin rather than the expected 8-fluoro derivative. A single electron transfer (SET) mechanism is proposed for this occurrence. The phenylsulfonyl product offers a structural feature common to some anti-HIV agents. [12] | |
α-Fluorosulfonamides were prepared by electrophilic fluorination of tertiary sulfonamides using N-fluorobenzenesulfonimide as fluorinating agent and utilizing the dimethoxybenzyl group (DMB) as a new sulfonamide protecting group. Removal of the DMB group with TFA/CH2Cl2 gave primary and secondary α-fluorosulfonamides. [13] | |
D. Y. Kim and coworkers reported the catalytic enantioselective fluorination of β-keto phosphonates catalyzed by a chiral palladium complex. Treatment of β -keto phosphonates with N-fluorobenzenesulfonimide (NFSI) as electrophilic fluorinating reagent under mild reaction conditions afforded the corresponding α-fluorinated β-keto phosphonates in moderate to excellent yields with excellent enantiomeric excesses. [14] |
-
1a
Differding E.Ofner H. Synlett 1991, 187 -
2
Differding E.Duthaler RO.Krieger A.Ruegg GM.Schmit C. Synlett 1991, 395 -
2b
Snieckus V.Beaulieu F.Mohri K.Han W.Murphy CK.Davis FA. Tetrahedron Lett. 1994, 35: 3465 - 3
Taylor SD.Kotoris CC.Dinaut AN.Chen M.-J. Tetrahedron 1998, 54: 1691 - 4
Shibata N.Ishimaru T.Nakamura M.Toru T. Synlett 2004, 2509 - 5
Taylor DM.Patrick Meier G. Tetrahedron Lett. 2000, 41, 3291 - 6
Briner PH.Fyfe MCT.Martin P.Murray P. J.Naud F.Procter M. J. Org. Process Res. Dev. 2006, 10: 346 - 7
Kotoris CC.Chen M.-J.Taylor SD. J. Org. Chem. 1998, 63: 8052 -
8a
Hamashima Y.Takano H.Hotta D.Sodeoka M. Org. Lett. 2003, 5: 3225 -
8b
Hamashima Y.Yagi K.Takano H.Tamas L.Sodeoka M. J. Am. Chem. Soc. 2002, 124: 14530 - 9
Kim THR.Kim DY. Tetrahedron Lett. 2005, 46: 3115 - 10
Beeson TD.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 8826 - 11
Verniest G.Hende EV.Surmount R.De Kimpe ND. Org. Lett. 2006, 8: 4767 - 12
Ko YJ.Park KB.Shim SB.Shin JH. J. Fluorine Chem. 2006, 127: 755 - 13
Roy A.Schneller SW. Org. Lett. 2005, 7: 3889 - 14
Hill B.Liu YD.Taylor S. Org. Lett. 2004, 6: 4285 - 15
Kim SM.Kim HR.Kim DY. Org. Lett. 2005, 7: 2309
References
-
1a
Differding E.Ofner H. Synlett 1991, 187 -
2
Differding E.Duthaler RO.Krieger A.Ruegg GM.Schmit C. Synlett 1991, 395 -
2b
Snieckus V.Beaulieu F.Mohri K.Han W.Murphy CK.Davis FA. Tetrahedron Lett. 1994, 35: 3465 - 3
Taylor SD.Kotoris CC.Dinaut AN.Chen M.-J. Tetrahedron 1998, 54: 1691 - 4
Shibata N.Ishimaru T.Nakamura M.Toru T. Synlett 2004, 2509 - 5
Taylor DM.Patrick Meier G. Tetrahedron Lett. 2000, 41, 3291 - 6
Briner PH.Fyfe MCT.Martin P.Murray P. J.Naud F.Procter M. J. Org. Process Res. Dev. 2006, 10: 346 - 7
Kotoris CC.Chen M.-J.Taylor SD. J. Org. Chem. 1998, 63: 8052 -
8a
Hamashima Y.Takano H.Hotta D.Sodeoka M. Org. Lett. 2003, 5: 3225 -
8b
Hamashima Y.Yagi K.Takano H.Tamas L.Sodeoka M. J. Am. Chem. Soc. 2002, 124: 14530 - 9
Kim THR.Kim DY. Tetrahedron Lett. 2005, 46: 3115 - 10
Beeson TD.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 8826 - 11
Verniest G.Hende EV.Surmount R.De Kimpe ND. Org. Lett. 2006, 8: 4767 - 12
Ko YJ.Park KB.Shim SB.Shin JH. J. Fluorine Chem. 2006, 127: 755 - 13
Roy A.Schneller SW. Org. Lett. 2005, 7: 3889 - 14
Hill B.Liu YD.Taylor S. Org. Lett. 2004, 6: 4285 - 15
Kim SM.Kim HR.Kim DY. Org. Lett. 2005, 7: 2309