References and Notes
1
Linderman RJ. In Comprehensive Heterocyclic Chemistry II
Vol. 1B:
Katritzky AR.
Rees CW.
Scriven EFV.
Padwa A.
Elsevier;
Oxford:
1996.
2
Yamaguchi M.
Hirao I.
Tetrahedron Lett.
1984,
25:
4549
3a
Bach T.
Kather K.
J. Org. Chem.
1996,
61:
7642
3b
Bach T.
Kather K.
Krämer O.
J. Org. Chem.
1998,
63:
1910
4a
Ng FW.
Lin H.
Tan Q.
Danishefsky SJ.
Tetrahedron Lett.
2002,
43:
545
4b
Ng FW.
Lin H.
Danishefsky SJ.
J. Am. Chem. Soc.
2002,
124:
9812
5
Corey EJ.
Raju N.
Tetrahedron Lett.
1983,
24:
5571
6
Capek K.
Vydra T.
Sedmera P.
Carbohydr. Res.
1987,
168:
c1
7
Khan N.
Morris TH.
Smith EH.
Walsh R.
J. Chem. Soc., Perkin Trans. 1
1991,
865
8
Itoh A.
Hirose Y.
Kashiwagi H.
Masaki Y.
Heterocycles
1994,
38:
2165
In taxoids, the close proximity of the C-2 hydroxy group with the oxetane ring allows for a particularly facile intramolecular SN2 displacement at C-20 leading to the formation of tetrahydrofurans:
9a
Farina V.
Huang S.
Tetrahedron Lett.
1992,
33:
3979
9b
Wahl A.
Guéritte-Voegelein F.
Guénard D.
Le Goff M.-T.
Potier P.
Tetrahedron
1992,
48:
6965
9c
Klein LL.
Tetrahedron Lett.
1993,
34:
2047
9d
Nicolaou KC.
Renaud J.
Nantermet PG.
Couladouros EA.
Guy RK.
Wrasidlo W.
J. Am. Chem. Soc.
1995,
117:
2409
9e
Danishefsky SJ.
Masters JJ.
Young WB.
Link JT.
Snyder LB.
Magee TV.
Jung DK.
Isaacs RCA.
Bornmann WG.
Alaimo CA.
Coburn CA.
Di Grandi MJ.
J. Am. Chem. Soc.
1996,
118:
2843
9f
Ojima I.
Lin S.
Inoue T.
Miller ML.
Borella CP.
Geng X.
Walsh JT.
J. Am. Chem. Soc.
2000,
122:
5343
10
Bach T.
Schröder J.
J. Org. Chem.
1999,
64:
1265
11
Boxall RJ.
Ferris L.
Grainger RS.
Synlett
2004,
2379
12
Grainger RS.
Patel A.
Chem. Commun.
2003,
1072
13
Kitagawa Y.
Itoh A.
Hashimoto S.
Yamamoto H.
Nozaki H.
J. Am. Chem. Soc.
1977,
99:
3864
14
Typical Experimental for Oxetane Ring-Opening Reaction with HCl
To a solution of oxetane 1a (50 mg, 0.18 mmol) in Et2O (5 mL) at 0 °C HCl (1 M in Et2O, 1.80 mL, 1.80 mmol) was added over a period of 10 min. The resulting solution was stirred for 18 h at r.t. The resulting mixture was poured into H2O (10 mL) and the aqueous layer was extracted with Et2O (2 × 10 mL). The combined organic phases were washed with brine (10 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified via column chromatography (hexane-EtOAc, 8:2) to furnish spirocycle 8a as a colorless oil (37 mg, 78%). R
f
= 0.2 (hexane-EtOAc, 8:2); mp 88-90 °C. IR (neat): νmax = 3445, 2945, 2865, 1651, 1497, 1466, 1199 cm-1. 1H NMR (360 MHz, CDCl3): δ = 6.65 (1 H, s, CCHCOCH3), 6.58 (1 H, s, CH2OCCHCCH3), 5.07 (1 H, dd, J = 6.8, 1.8 Hz, CHOH), 3.93 (1 H, d, J = 11.0 Hz, COCH2C), 3.79 (3 H, s, ArOCH3), 3.65 (1 H, d, J = 11.0 Hz, COCH2C), 2.19 (3 H, s, ArCH3), 2.16-2.11 (1 H, m, HOCHCH
2CH2), 1.97-1.94 (1 H, m, HOCHCH
2CH2), 1.61-1.50 (1 H, m, HOCHCH2CH
2), 1.49-1.44 (1 H, m, HOCHCH2CH
2), 1.26 (1 H, br, OH), 1.07 [3 H, s, C(CH3)2], 1.03 [3 H, s, C(CH3)2]. 13C NMR (100 MHz, CDCl3): δ = 17.0 (q), 24.6 (q), 26.7 (q), 32.2 (t), 40.9 (t), 44.9 (s), 56.9 (q), 64.9 (s), 65.2 (t), 92.8 (d), 108.6 (d), 111.7 (d), 125.3 (s), 128.2 (s), 152.1 (s), 156.1 (s). ESI-HRMS: m/z calcd for C16H22O3Na: 285.1461; found: 285.1457; LRMS (EI): m/z (%) = 262 (100) [M+], 231 (5), 205 (33), 192 (6), 175 (33), 163 (9).
15
Typical Experimental Procedure for Oxetane Ring-Opening Reaction with AcCl
To a solution of oxetane 1a (50 mg, 0.18 mmol) in DCE (10 mL) at r.t., AcCl (0.13 mL, 1.80 mmol) was added. The resulting solution was stirred overnight at r.t. poured into H2O (10 mL) and the aqueous layer was extracted with CH2Cl2 (2 × 10 mL). The combined organic phases were dried over MgSO4, filtered, and reduced in vacuo. The crude product was purified via column chromatography (hexane-EtOAc, 9:1) to furnish spirocycle 9a as a colorless oil (45 mg, 81%). R
f
= 0.2 (hexane-EtOAc, 9:1). IR (neat): νmax = 2950, 2869, 2252, 2105, 1739, 1651, 1490, 1464, 1223, 1047 cm-1. 1H NMR (360 MHz, CDCl3): δ = 6.66 (1 H, s, CCHCOCH3), 6.54 (1 H, s, CH2OCCHCCH3), 4.96 (1 H, dd, J = 6.8, 1.6 Hz, CHOCOCH3), 4.45 (1 H, d, J = 11.1 Hz, COCH2C), 4.16 (1 H, d, J = 11.2 Hz, COCH2C), 3.77 (3 H, s, ArOCH3), 2.18 (3 H, s, ArCH3), 2.15-2.12 (1 H, m, COCHCH
2CH2), 1.97 (3 H, s, OCOCH3), 1.99-1.91 (1 H, m, COCHCH
2CH2), 1.63-1.55 (1 H, m, COCHCH2CH
2), 1.52-1.48 (1 H, m, COCHCH2CH
2), 1.10 [3 H, s, C(CH3)2], 1.06 [3 H, s, C(CH3)2]. 13C NMR (125 MHz, CDCl3): δ = 16.5 (q), 20.9 (q), 24.6 (q), 26.4 (q), 31.9 (t), 39.6 (t), 44.9 (s), 56.4 (q), 61.7 (s), 67.1 (t), 92.3 (d), 109.0 (d), 111.2 (d), 125.9 (s), 127.3 (s), 151.4 (s), 154.8 (s), 171.0 (s). ESI-HRMS: m/z calcd for C18H24O4Na: 327.1567; found: 327.1562. LRMS (EI): m/z (%) = 304 (100) [M+], 262 (21), 175 (66), 160 (8), 115 (8), 91 (7), 69 (5), 43 (16).
16
Joshi BV.
Rao TS.
Reese CB.
J. Chem. Soc., Perkin Trans. 1
1992,
2537
17
Thurner A.
Faigl F.
Tõke L.
Mordini A.
Valacchi M.
Reginato G.
Czira T.
Tetrahedron
2001,
57:
8173
18a
Kočovský P.
Pour M.
J. Org. Chem.
1990,
55:
5580
18b
Polt R.
Wijayaratne T.
Tetrahedron Lett.
1991,
32:
4831
19 Ring opening by chloride on activated 15 can lead to two possible regioisomeric chloroacetates. The stucture of 16 was confirmed by a long-range COSY experiment, and configuration at the chloro-substituted stereocenter was possible through NOESY correlation. The stereochemical outcome of this reaction suggests it also likely proceeds via an SN2-type ring opening of the activated ether with chloride nucleophile, where the regiochemical outcome is presumably a result of the preferred attack by chloride at a secondary carbon over a primary neopentyl-like carbon. For an analogous example in oxetane ring opening using HCl, see: Ceccherelli P.
Curini M.
Marcotullio MC.
J. Chem. Soc., Perkin Trans. 1
1985,
2173
20a
Benedetti MOV.
Monteagudo ES.
Burton G.
J. Chem. Res., Synop.
1990,
248
20b
Hernández R.
Velázquez SM.
Suárez E.
J. Org. Chem.
1994,
59:
6395
20c
Abad A.
Agulló C.
Cuñat AC.
García AB.
Giménez-Saiz C.
Tetrahedron
2003,
59:
9523
21
Kleinwächter P.
Schlegel B.
Dörfelt H.
Gräfe U.
J. Antibiot.
2001,
54:
526
22
Srikrishna A.
Lakshmi BV.
Tetrahedron Lett.
2005,
46:
7029