References and Notes
1 Permanent address: Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India.
2
Torres YR.
Bugni TS.
Berlinck RGS.
Ireland CM.
Magalhaes A.
Ferraira AG.
Mareira da Rocha R.
J. Org. Chem.
2002,
67:
5429
For selected reviews on pyridoacridine alkaloids, see:
3a
Marshall KM.
Barrows LR.
Nat. Prod. Rep.
2004,
21:
731
3b
Delfourne E.
Bastide J.
Med. Res. Rev.
2002,
23:
234
3c
Skyler D.
Heathcock CH.
J. Nat. Prod.
2002,
65:
1573
3d
Ding Q.
Chichak K.
Lown JW.
Curr. Med. Chem.
1999,
6:
1
3e
Molinski TF.
Chem. Rev.
1993,
93:
1825
For reviews of the synthesis of the mitomycins and mitosenes, see:
4a
Waldmann H.
In Organic Synthesis Highlights II
Waldmann H.
Wiley-VCH;
Weinheim:
1995.
p.309
4b
Danishefsky SJ.
Schkeryantz JM.
Synlett
1995,
475
For selected reviews on directed ortho-metalation and its applications in organic synthesis, see:
5a
Snieckus V.
Chem. Rev.
1990,
90:
879
5b
Clark RD.
Jahangir A.
Org. React.
1995,
47:
1
5c
Anctil EJG.
Snieckus V.
J. Organomet. Chem.
2002,
653:
150
5d
Clayden J.
Organolithiums: Selectivity for Synthesis
Elsevier Science;
Amsterdam:
2002.
6 For a recent example of an ortho-lithiation-methylation of a benzene derivative directed by a pivaloylamino group, see: Yoshida Y.
Hamada Y.
Umezu K.
Tabuchi F.
Org. Process Res. Dev.
2004,
8:
958
For some representative literature examples of oxidative demethylation reactions with CAN, see:
7a
Ali MH.
Niedbalski M.
Bohnert G.
Bryant D.
Synth. Commun.
2006,
36:
1751
7b
de la Fuente JA.
Martín MJ.
Blanco MM.
Pascual-Alfonso E.
Avendaño C.
Menéndez JC.
Bioorg. Med. Chem.
2001,
9:
1807
7c
López-Alvarado P.
Avendaño C.
Menéndez JC.
Synth. Commun.
2002,
20:
3233
7d
Kitahara Y.
Yakahara S.
Koizumi Y.
Muranishi H.
Kubo A.
Chem. Pharm. Bull.
1988,
36:
3623
7e
Jacob P.
Callery PS.
Shulgin AT.
Castagnoli N.
J. Org. Chem.
1976,
41:
3627
See, for instance:
8a
Peifer C.
Kinkel K.
Abadleh M.
Schollmeyer D.
Laufer S.
J. Med. Chem.
2007,
50:
1213
8b
Tedesco R.
Shaw AN.
Bambal R.
Chai D.
Concha NO.
Darcy MG.
Dhanak D.
Fitch DM.
Gates A.
Gerhardt WG.
Halegoua DL.
Han C.
Hofmann GA.
Johnston VK.
Kaura AC.
Liu N.
Keenan RM.
Lin-Goerke J.
Sarisky RT.
Wiggall KJ.
Zimmerman MN.
Duffy KJ.
J. Med. Chem.
2006,
49:
971
8c
Chilin A.
Marzano C.
Guiotto A.
Baccichetti F.
Carlassare F.
Bordin F.
J. Med. Chem.
2002,
45:
1146
8d
Oshiro Y.
Sakurai Y.
Sato S.
Kurayashi N.
Tanaka T.
Kikuchi T.
Tottori K.
Uwahodo Y.
Miwa T.
Nishi T.
J. Med. Chem.
2000,
43:
177
8e
Isogaya M.
Sugimoto Y.
Tanimura R.
Tanaka R.
Kikkawa H.
Nagao T.
Kurose H.
Mol. Pharmacol.
1999,
56:
875
9
Avendaño C.
de la Cuesta E.
Gesto C.
Synthesis
1991,
727
10a
González R.
Ramos MT.
de la Cuesta E.
Avendaño C.
Heterocycles
1993,
36:
315
10b
Fernández M.
de la Cuesta E.
Avendaño C.
Synthesis
1995,
1362
11
Martín O.
de la Cuesta E.
Avendaño C.
Tetrahedron
1995,
51:
7547
12
Úbeda JI.
Villacampa M.
Avendaño JC.
Lett. Org. Chem.
2005,
2:
374
13
Representative Procedure
To a cooled (0 °C) solution of 4-methyl-5,8-dimethoxy-6-pivaloylamino-2 (1H)-quinolinone (12, 636 mg, 2 mmol) in anhyd THF (25 mL), under an argon atmosphere, was added dropwise a solution of BuLi in hexanes (5 mL, 8 mmol) and the resulting yellow solution was stirred at 0 °C for 2 h. Methyl iodide (1.13 g, 8 mmol) was added dropwise at the same temperature and stirring was maintained at 0 °C for 1 h, and then the reaction was left to warm to r.t. for 13 h. The reaction mixture was poured onto sat. aq NH4Cl (25 mL) and extracted with CHCl3 (3 × 50 mL). The combined extracts were dried over anhyd Na2SO4 and evaporated, and the residue was purified by column chromatography on silica gel, eluting with a PE-EtOAc gradient, to give 432 mg (65%) of compound 14a as a white solid; mp 241-243 °C. IR (KBr): 3299 (NH), 1666 (CO) cm-1. 1H NMR (250 MHz, CDCl3): δ = 9.19 (br s, 1 H, N1-H), 7.38 (br s, 1 H, NH), 6.40 (s, 1 H, H-3), 3.80 (s, 3 H, OCH3), 3.66 (s, 1 H, OCH3), 2.62 (s, 3 H, C4-CH3), 2.20 (s, 3 H, C7-CH3), 1.37 (s, 9 H, t-Bu) ppm. 13C NMR (62.9 MHz, CDCl3): δ = 177.6 (CON), 161.6 (C-2), 149.6 (C-4), 148.9 (C-8), 140.9 (C-5), 132.5 (C-6), 131.5 (C-8a), 124.9 (C-7), 122.2 (C-3), 113.2 (C-4a), 62.0 (OCH3), 61.2 (OCH3), 39.5 [C(CH3)3], 27.8 [C(CH3)3], 22.8 (C4-CH3), 12.1 (C7-CH3) ppm. Anal. Calcd for C18H24N2O4: C, 65.04; H, 7.28; N, 8.43. Found: C, 64.95; H, 7.20; N, 8.16.
14 In this case, compound 14b was accompanied by 14% of 4-propyl-7-ethyl-5,8-dimethoxy-6-pivaloylamino-2 (1H)-quinolinone, from dialkylation at both C-7 and at the C-4 methyl. The difference in behavior between iodides and bromides may be related to different aggregation states of the intermediate organolithium compounds, leading to an increased stability of the species alkylated at C-7 and lithiated at both NH groups and at the C-4 methyl in the presence of bromide and allowing its generation under those conditions. For an example of an abrupt change in reactivity of a carboxylic acid dilithio derivative in the presence of two different halides, which was also explained in terms of different aggregation states of the dianion, see: Gil S.
Torres M.
Ortúzar N.
Wincewicz R.
Parra M.
Eur. J. Org. Chem.
2004,
2160