Subscribe to RSS
DOI: 10.1055/s-2007-991043
Uterine Receptivity and the Ramifications of Ovarian Stimulation on Endometrial Function
Publication History
Publication Date:
25 October 2007 (online)
ABSTRACT
Controlled ovarian stimulation (COS) is widely used in assisted reproduction techniques (ART). However, hormonal treatment induces endometrial alterations that may alter implantation rates compared with natural cycles. Endometrial alterations have been observed by histological and biochemical techniques. The recent developments in functional genomics have provided objective tools to analyze the endometrium in natural cycles and evaluate the impact of COS protocols in endometrial development. This article describes the fundamental aspects of endometrial receptivity in natural cycles and reports how COS affects the morphology, biochemistry, and the genomic pattern of the endometrium.
KEYWORDS
Endometrial receptivity - controlled ovarian stimulation (COS) - assisted reproductive techniques (ARTs)
REFERENCES
- 1 Wilcox A J, Baird D D, Weinberg C R. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999; 340 1796-1799
- 2 Bergh P A, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril. 1992; 58 537-542
- 3 Steptoe P C, Edwards R G. Birth after the reimplantation of a human embryo. Lancet. 1978; 2 366
- 4 Nygren K G, Andersen A N. Assisted reproductive technology in Europe, 1998. Results generated from European registers by ESHRE. European Society of Human Reproduction and Embryology. Hum Reprod. 2001; 16 2459-2471
- 5 Assisted Reproductive Technology Success Rates National Summary and Fertility Clinic Reports 2004. U.S. Department of Health and Human Services Centers for Disease Control and Prevention. Available at: http://www.cdc.gov/ART/ART2004 Accessed September 20, 2007;
- 6 Nygren K G, Andersen A N. Assisted reproductive technology in Europe, 1997. Results generated from European registers by ESHRE. European IVF-Monitoring Programme (EIM), for the European Society of Human Reproduction and Embryology (ESHRE). Hum Reprod. 2001; 16 384-391
- 7 Andersen A N, Gianaroli L, Felberbaum R, de Mouzon J, Nygren K G. Assisted reproductive technology in Europe, 2001. Results generated from European registers by ESHRE. Hum Reprod. 2005; 20 1158-1176
- 8 Assisted Reproductive Technology Success Rates National Summary and Fertility Clinic Reports 2001. U.S. Department of Health and Human Services Centers for Disease Control and Prevention. Available at: http://www.cdc.gov/ART/ART01/PDF/ART2001.pdf Accessed September 20, 2007
- 9 Fauser B CJM, Devroey P. Reproductive biology and IVF: ovarian stimulation and luteal phase consequences. Trends Endocrinol Metab. 2003; 14 236-242
- 10 Simón C, Cano F, Valbuena D et al.. Clinical evidence for a detrimental effect on uterine receptivity of high serum estradiol levels in high and normal responder patients. Hum Reprod. 1995; 10 2432-2434
- 11 Pellicer A, Valbuena D, Cano F et al.. Lower implantation rates in high responders: evidence for an altered endocrine milieu during the preimplantation period. Fertil Steril. 1996; 65 1190-1195
- 12 Simón C, García-Velasco J, Valbuena D et al.. Increasing uterine receptivity by decreasing estradiol levels during the preimplantation period in high responders with the use of a follicle-stimulating hormone step-down regimen. Fertil Steril. 1998; 70 234-239
- 13 Simón C, Domínguez F, Valbuena D et al.. The role of estrogen in uterine receptivity and blastocyst implantation. Trends Endocrinol Metab. 2003; 14 197-199
- 14 Ma W G, Song H, Das S K et al.. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci USA. 2003; 100 2963-2968
- 15 Macklon N S, Fauser B C. Impact of ovarian hyperstimulation on the luteal phase. J Reprod Fertil Suppl. 2000; 55 101-108
- 16 Check J H, Nowroozi K, Chase J, Nazari A, Braithwaite C. Comparison of pregnancy rates following in vitro fertilization ± embryo transfer between the donors and the recipients in a donor oocyte program. J Assist Reprod Genet. 1992; 9 248-250
- 17 Ertzeid G, Storeng R. The impact of ovarian stimulation on implantation and fetal development in mice. Hum Reprod. 2001; 16 221-225
- 18 Levi A J, Drews M R, Bergh P A, Miller B T, Scott Jr R T. Controlled ovarian stimulation does not adversely affect endometrial receptivity in in vitro fertilization cycles. Fertil Steril. 2001; 76 670-674
- 19 Giudice L, Saleh W. Growth factors in reproduction. Trends Endocrinol Metab. 1995; 2 60-69
- 20 Domínguez F, Yanez-Mo M, Sanchez-Madrid F, Simon C. Embryonic implantation and leukocyte transendothelial migration: different processes with similar players?. FASEB J. 2005; 19 1056-1060
- 21 Murphy C R, Shaw T J. Plasma membrane transformation: a common response of uterine epithelial cells during the peri-implantation period. Cell Biol Int. 1994; 18 1115-1128
- 22 Murphy C R. The cytoskeleton of uterine epithelial cells: a new player in uterine receptivity and the plasma membrane transformation. Hum Reprod Update. 1995; 1 567-580
- 23 Thie M, Harrach-Ruprecht B, Sauer H, Fuchs P, Albers A, Denker H W. Cell adhesion to the apical pole of epithelium: a function of cell polarity. Eur J Cell Biol. 1995; 66 180-191
- 24 Martin J C, Jasper M J, Valbuena D et al.. Increased adhesiveness in cultured endometrial-derived cells is related to the absence of moesin expression. Biol Reprod. 2000; 63 1370-1376
-
25 Martel D, Malet C, Gautray J, Psychoyos A.
Surface changes of the luminal uterine epithelium during the human menstrual cycle: a scanning electron microscopic study . In: de Brux J, Mortel R, Grautey JP The Endometrium: Hormonal Impacts. New York; Plenum Press 1981: 15-29 - 26 Murphy C R. Understanding the apical surface markers of uterine receptivity. Pinopodes or uterodomes?. Hum Reprod. 2000; 15 2451-2454
- 27 Nikas G, Makrigiannakis A. Endometrial pinopodes and uterine receptivity. Ann N Y Acad Sci. 2003; 997 120-123
- 28 Noyes R W, Hertig A T, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950; 1 3-17
- 29 Murray M J, Meyer W R, Zaino R J et al.. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril. 2004; 81 1333-1343
- 30 Coutifaris C, Myers E R, Guzick D S et al.. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril. 2004; 82 1264-1272
- 31 Green S, Walter P, Kumar V et al.. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature. 1986; 320 134-139
- 32 Mosselman S, Polman J, Dijkema R. ERbeta: identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996; 392 49-53
- 33 Punyadeera C, Dassen H, Klomp J et al.. Oestrogen-modulated gene expression in the human endometrium. Cell Mol Life Sci. 2005; 62 239-250
- 34 Jabbour H N, Kelly R W, Fraser H M, Critchley H OD. Endocrine regulation of menstruation. Endocr Rev. 2006; 27 17-46
- 35 Ponnampalam A P, Weston G C, Trajstman A C, Susil B, Rogers P A. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod. 2004; 10 879-893
- 36 Talbi S, Hamilton A E, Vo K C et al.. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006; 147 1097-1121
- 37 Carson D, Lagow E, Thathiah A et al.. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod. 2002; 8 871-879
- 38 Kao L C, Tulac S, Lobo S et al.. Global gene profiling in human endometrium during the window implantation. Endocrinology. 2002; 143 2119-2138
- 39 Borthwick J M, Charnock-Jones S D, Tom B D et al.. Determination of the transcript profile of human endometrium. Mol Hum Reprod. 2003; 9 19-33
- 40 Riesewijk A, Martin J, Horcajadas J A et al.. Gene expression profiling of human endometrial receptivity on days LH + 2 versus LH + 7 by microarray technology. Mol Hum Reprod. 2003; 9 253-264
- 41 Mirkin S, Arslan M, Churikov D et al.. In search of candidate genes critically expressed in the human endometrium during the window of implantation. Hum Reprod. 2005; 20 2104-2117
- 42 Giudice L C. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. Endocrinology. 2003; 144 2870-2881
- 43 Horcajadas J A, Riesewijk A, Martin J et al.. Global gene expression profiling of human endometrial receptivity. J Reprod Immunol. 2004; 63 41-49
- 44 Horcajadas J A, Pellicer A, Simón C. Wide genomic analysis of human endometrial receptivity. New times, new opportunities. Hum Reprod Update. 2007; 13 77-86
- 45 Seif M W, Pearson J M, Ibrahim Z H et al.. Endometrium in in-vitro fertilization cycles: morphological and functional differentiation in the implantation phase. Hum Reprod. 1992; 7 6-11
-
46 Psychoyos A. The implantation window; basic and aspects.
In: Mori Perspectives on Assisted Reproduction . Ares-Serono Symposium 4, Rome 1994: 57-63 - 47 Kolb B A, Paulson R J. The luteal phase of cycles utilizing controlled ovarian hyperstimulation and the possible impact of this hyperstimulation on embryo implantation. Am J Obstet Gynecol. 1997; 176 1262-1267
- 48 Kolibianakis E M, Bourgain C, Platteau P, Albano C, Van Steirteghem A C, Devroey P. Abnormal endometrial development occurs during the luteal phase of nonsupplemented donor cycles treated with recombinant folliclestimulating hormone and gonadotropin-releasing hormone antagonists. Fertil Steril. 2003; 80 464-466
- 49 Psychoyos A, Nikas G. Uterine pinopodes as markers of uterine receptivity. Assist Reprod Rev. 1994; 4 26-32
- 50 Nikas G, Develioglu O H, Toner J P et al.. Endometrial pinopodes indicate a shift in the window of receptivity in IVF cycles. Hum Reprod. 1999; 14 787-792
- 51 Nikas G, Agahanova L. Endometrial pinopodes: some understanding on human implantation?. Reprod Biomed Online. 2002; 4 18-23
- 52 Develioglu O H, Hsiu J G, Nikas G, Toner J P, Oehninger S, Jones H W. Endometrial estrogen and progesterone receptor and pinopode expression in stimulated cycles of oocyte donors. Fertil Steril. 1999; 71 1040-1047
- 53 Simón C, Mercader A, Frances A et al.. Hormonal regulation of serum and endometrial IL-1 alpha, IL-1 beta and IL-1ra: IL-1 endometrial microenvironment of the human embryo at the apposition phase under physiological and supraphysiological steroid level conditions. J Reprod Immunol. 1996; 31 165-184
- 54 Fauser B CJM, Devroey P. Reproductive biology and IVF: ovarian stimulation and luteal phase consequences. Trends Endocrinol Metab. 2003; 14 236-242
- 55 Mirkin S, Nikas G, Hsiu J G, Diaz J, Oehninger S. Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles. J Clin Endocrinol Metab. 2004; 89 5742-5752
- 56 Horcajadas J A, Riesewijk A, Polman J et al.. Effect of controlled ovarian hyperstimulation in IVF on endometrial gene expression profiles. Mol Hum Reprod. 2005; 11 195-205
- 57 Simon C, Oberye J, Bellver J, Vidal C et al.. Similar endometrial development in oocyte donors treated with either high- or standard-dose GnRH antagonist compared to treatment with a GnRH agonist or in natural cycles. Hum Reprod. 2005; 20 3318-3327
- 58 Horcajadas J A, Reisewijk A, Mínguez P et al.. Comparison of the endometrial gene expression profile throughout the window of implantation in natural versus COH cycles. Hum Reprod. 2006; 21(suppl 1) i30
Carlos SimónM.D.
Fundación IVI, Instituto Valenciano de Infertilidad, University of Valencia
c/Guadassuar, 1 Bajo, 46015 Valencia, Spain
Email: csimon@ivi.es