ABSTRACT
Cholangiopathies are characterized by a predominately bile duct-directed inflammatory response that leads to bile duct injury and, if the injury is persistent, bile duct loss and the chance of developing bile duct cancer (cholangiocarcinoma). Although the cholangiopathies have broad range of etiologies and pathogenesis (e.g., inherited disorders, autoimmune disorders, infections, drug-induced, ischemia, and unknown etiology), all share the common pathogenetic target-the biliary epithelial cell (cholangiocyte). For the most part, the pathogenesis of these diseases is poorly understood, which correspondingly has restricted clinicians to nonspecific and usually ineffective therapies for these disorders. Nevertheless, significant advances toward the understanding of the mechanisms involved in cholangiocyte-directed inflammation, biliary fibrosis, cholangiocyte death, and cholangiocarcinoma have unfolded over the past 15 years that may provide us new hopes and schemes for treatment of these disorders.
KEYWORDS
Bile duct epithelium - ductopenia - primary biliary cirrhosis - primary sclerosing cholangitis - cholangiopathy
REFERENCES
1
Crawford A R, Lin X Z, Crawford J M.
The normal adult human liver biopsy: a quantitative reference standard.
Hepatology.
1998;
28
323-331
2
Oda T, Elkahloun A G, Pike B L et al..
Mutations in the human Jagged1 gene are responsible for Alagille syndrome.
Nat Genet.
1997;
16
235-242
3
Li L, Krantz I D, Deng Y et al..
Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1.
Nat Genet.
1997;
16
243-251
4
Ehebauer M, Hayward P, Martinez-Arias A.
Notch signaling pathway.
Sci STKE.
2006;
2006
cm7
5
McCright B, Lozier J, Gridley T.
A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency.
Development.
2002;
129
1075-1082
6
Bezerra J A.
The next challenge in pediatric cholestasis: deciphering the pathogenesis of biliary atresia.
J Pediatr Gastroenterol Nutr.
2006;
43(suppl 1)
S23-S29
7
Riepenhoff-Talty M, Schaekel K, Clark H F et al..
Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice.
Pediatr Res.
1993;
33(4 Pt 1)
394-399
8
Gadsby D C, Vergani P, Csanady L.
The ABC protein turned chloride channel whose failure causes cystic fibrosis.
Nature.
2006;
440
477-483
9
Feranchak A P.
Hepatobiliary complications of cystic fibrosis.
Curr Gastroenterol Rep.
2004;
6
231-239
10
Feranchak A P, Sokol R J.
Cholangiocyte biology and cystic fibrosis liver disease.
Semin Liver Dis.
2001;
21
471-488
11
Beuers U.
Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis.
Nat Clin Pract Gastroenterol Hepatol..
2006;
3
318-328
12
Giorgini A, Selmi C, Invernizzi P, Podda M, Zuin M, Gershwin M E.
Primary biliary cirrhosis: solving the enigma.
Ann N Y Acad Sci.
2005;
1051
185-193
13
Mackay I R, Rowley M J.
Autoimmune epitopes: autoepitopes.
Autoimmun Rev.
2004;
3
487-492
14
Oertelt S, Lian Z X, Cheng C M et al..
Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice.
J Immunol.
2006;
177
1655-1660
15
Wakabayashi K, Lian Z X, Moritoki Y et al..
IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis.
Hepatology.
2006;
44
1240-1249
16
Irie J, Wu Y, Wicker L S et al..
NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis.
J Exp Med.
2006;
203
1209-1219
17
Rust C, Beuers U.
Medical treatment of primary biliary cirrhosis and primary sclerosing cholangitis.
Clin Rev Allergy Immunol.
2005;
28
135-145
18
Charatcharoenwitthaya P, Lindor K D.
Primary sclerosing cholangitis: diagnosis and management.
Curr Gastroenterol Rep.
2006;
8
75-82
19
Kim W R, Ludwig J, Lindor K D.
Variant forms of cholestatic diseases involving small bile ducts in adults.
Am J Gastroenterol.
2000;
95
1130-1138
20
O'Mahony C A, Vierling J M.
Etiopathogenesis of primary sclerosing cholangitis.
Semin Liver Dis.
2006;
26
3-21
21
Norris S, Kondeatis E, Collins R et al..
Mapping MHC-encoded susceptibility and resistance in primary sclerosing cholangitis: the role of MICA polymorphism.
Gastroenterology.
2001;
120
1475-1482
22
Fickert P, Fuchsbichler A, Wagner M et al..
Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.
Gastroenterology.
2004;
127
261-274
23
Pauli-Magnus C, Kerb R, Fattinger K et al..
BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis.
Hepatology.
2004;
39
779-791
24
Gallegos-Orozco J F, Yurk C E, Wang N et al..
Lack of association of common cystic fibrosis transmembrane conductance regulator gene mutations with primary sclerosing cholangitis.
Am J Gastroenterol.
2005;
100
874-878
25
Sheth S, Shea J C, Bishop M D et al..
Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis.
Hum Genet.
2003;
113
286-292
26
Perez-Simon J A, Sanchez-Abarca I, Diez-Campelo M, Caballero D, San Miguel J.
Chronic graft-versus-host disease: pathogenesis and clinical management.
Drugs.
2006;
66
1041-1057
27
Demetris A J.
Immune cholangitis: liver allograft rejection and graft-versus-host disease.
Mayo Clin Proc.
1998;
73
367-379
28
Duarte R F, Delgado J, Shaw B E et al..
Histologic features of the liver biopsy predict the clinical outcome for patients with graft-versus-host disease of the liver.
Biol Blood Marrow Transplant.
2005;
11
805-813
29
Beuers U, Rust C.
Overlap syndromes.
Semin Liver Dis.
2005;
25
311-320
30
Dominguez-Antonaya M, Coba-Ceballos J M, Gomez-Rubio M, de Cuenca B, Ortega-Munoz P, Garcia J.
Idiopathic adulthood ductopenia: a diagnosis: two clinicopathologic courses.
J Clin Gastroenterol.
2000;
30
210-212
31
Burak K W, Pearson D C, Swain M G, Kelly J, Urbanski S J, Bridges R J.
Familial idiopathic adulthood ductopenia: a report of five cases in three generations.
J Hepatol.
2000;
32
159-163
32
LeSage G D, Benedetti A, Glaser S et al..
Acute carbon tetrachloride feeding selectively damages large, but not small, cholangiocytes from normal rat liver.
Hepatology.
1999;
29
307-319
33
Gaudio E, Barbaro B, Alvaro D et al..
Vascular endothelial growth factor stimulates rat cholangiocyte proliferation via an autocrine mechanism.
Gastroenterology.
2006;
130
1270-1282
34
LeSage G D, Glaser S S, Marucci L et al..
Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver.
Am J Physiol.
1999;
276(5 Pt 1)
G1289-G1301
35
Lesage G, Glaser S, Ueno Y et al..
Regression of cholangiocyte proliferation after cessation of ANIT feeding is coupled with increased apoptosis.
Am J Physiol Gastrointest Liver Physiol.
2001;
281
G182-G190
36
Alpini G, Ueno Y, Tadlock L et al..
Increased susceptibility of cholangiocytes to tumor necrosis factor-alpha cytotoxicity after bile duct ligation.
Am J Physiol Cell Physiol.
2003;
285
C183-C194
37
Marzioni M, Alpini G, Saccomanno S et al..
Endogenous opioids modulate the growth of the biliary tree in the course of cholestasis.
Gastroenterology.
2006;
130
1831-1847
38
LeSage G D, Glaser S, Marucci L et al..
Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from bile duct ligated rat liver.
Am J Physiol.
1999;
276
G1289-G1301
39
Alvaro D, Alpini G, Onori P et al..
Effect of ovariectomy on the proliferative capacity of intrahepatic rat cholangiocytes.
Gastroenterology.
2002;
123
336-344
40
Glaser S, Alvaro D, Francis H et al..
Adrenergic receptor agonists prevent bile duct injury induced by adrenergic denervation by increased cAMP levels and activation of Akt.
Am J Physiol Gastrointest Liver Physiol.
2006;
290
G813-G826
41
LeSage G, Alvaro D, Benedetti A et al..
Cholinergic system modulates growth, apoptosis and secretion of cholangiocytes from bile duct ligated rats.
Gastroenterology.
1999;
117
191-199
42
Marzioni M, LeSage G D, Glaser S et al..
Taurocholate prevents the loss of intrahepatic bile ducts due to vagotomy in bile duct-ligated rats.
Am J Physiol Gastrointest Liver Physiol.
2003;
284
G837-G852
43
Marzioni M, Glaser S, Francis H et al..
Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin.
Gastroenterology.
2005;
128
121-137
44
Gaudio E, Onori P, Pannarale L, Alvaro D.
Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis: a morphological study.
Gastroenterology.
1996;
111
1118-1124
45
Canbay A, Friedman S, Gores G J.
Apoptosis: the nexus of liver injury and fibrosis.
Hepatology.
2004;
39
273-278
46
Gaudio E, Barbaro B, Alvaro D et al..
Administration of r-VEGF-A prevents hepatic artery ligation-induced bile duct damage in bile duct ligated rats.
Am J Physiol Gastrointest Liver Physiol.
2006;
291
G307-G317
47
Bhathal P S, Gall J A.
Deletion of hyperplastic biliary epithelial cells by apoptosis following removal of the proliferative stimulus.
Liver.
1985;
5
311-325
48
Ueno Y, Ishii M, Yahagi K et al..
Fas-mediated cholangiopathy in the murine model of graft versus host disease.
Hepatology.
2000;
31
966-974
49
Reynoso-Paz S, Coppel R L, Mackay I R, Bass N M, Ansari A A, Gershwin M E.
The immunobiology of bile and biliary epithelium.
Hepatology.
1999;
30
351-357
50 Vierling J, Braun M, Wang H. Immunopathogenesis of Vanishing Bile Duct Syndromes. Georgetown, TX; Eurekah.com/Landes Bioscience 2004
51
Strazzabosco M, Fabris L, Spirli C.
Pathophysiology of cholangiopathies.
J Clin Gastroenterol.
2005;
39(4 suppl 2)
S90-S102
52
Lazaridis K N, Strazzabosco M, Larusso N F.
The cholangiopathies: disorders of biliary epithelia.
Gastroenterology.
2004;
127
1565-1577
53
Ludwig J.
The pathology of primary biliary cirrhosis and autoimmune cholangitis.
Best Pract Res Clin Gastroenterol.
2000;
14
601-613
54 Vierling J M, Hu K-Q. Immunologic Mechanisms of Hepatobiliary Injury. Baltimore; Williams & Wilkins 1996
55 Ludwig J. Histopathology of Primary Sclerosing Cholangitis. Boston; Kluwer Academic Publishers 1998
56
Yeaman S J, Kirby J A, Jones D E.
Autoreactive responses to pyruvate dehydrogenase complex in the pathogenesis of primary biliary cirrhosis.
Immunol Rev.
2000;
174
238-249
57 Vierling J. Animal Models of Autoimmune Liver Diseases. Philadelphia; Hanley & Belfus 2002
58
Palmer J M, Kirby J A, Jones D E.
The immunology of primary biliary cirrhosis: the end of the beginning?.
Clin Exp Immunol.
2002;
129
191-197
59
Afford S C, Ahmed-Choudhury J, Randhawa S et al..
CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human intrahepatic biliary epithelial cells.
FASEB J.
2001;
15
2345-2354
60
Yamada G, Hyodo I, Tobe K et al..
Ultrastructural immunocytochemical analysis of lymphocytes infiltrating bile duct epithelia in primary biliary cirrhosis.
Hepatology.
1986;
6
385-391
61
Si L, Whiteside T L, Schade R R, Starzl T E, Van Thiel D H.
T-lymphocyte subsets in liver tissues of patients with primary biliary cirrhosis (PBC), patients with primary sclerosing cholangitis (PSC), and normal controls.
J Clin Immunol.
1984;
4
262-272
62
Iwata M, Harada K, Hiramatsu K et al..
Fas ligand expressing mononuclear cells around intrahepatic bile ducts co-express CD68 in primary biliary cirrhosis.
Liver.
2000;
20
129-135
63
Ayres R C, Neuberger J M, Shaw J, Joplin R, Adams D H.
Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines.
Gut.
1993;
34
1245-1249
64
Spirli C, Fabris L, Duner E et al..
Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes.
Gastroenterology.
2003;
124
737-753
65
Liu Z, Sakamoto T, Ezure T et al..
Interleukin-6, hepatocyte growth factor, and their receptors in biliary epithelial cells during a type I ductular reaction in mice: interactions between the periductal inflammatory and stromal cells and the biliary epithelium.
Hepatology.
1998;
28
1260-1268
66
Spirli C, Nathanson M H, Fiorotto R et al..
Proinflammatory cytokines inhibit secretion in rat bile duct epithelium.
Gastroenterology.
2001;
121
156-169
67
Malhi H, Gores G J, Lemasters J J.
Apoptosis and necrosis in the liver: a tale of two deaths?.
Hepatology.
2006;
43(2 suppl 1)
S31-S44
68
Terada T, Nakanuma Y.
Detection of apoptosis and expression of apoptosis-related proteins during human intrahepatic bile duct development.
Am J Pathol.
1995;
146
67-74
69
Guicciardi M E, Gores G J.
Apoptosis: a mechanism of acute and chronic liver injury.
Gut.
2005;
54
1024-1033
70
Baskin-Bey E S, Gores G J.
Death by association: BH3 domain-only proteins and liver injury.
Am J Physiol Gastrointest Liver Physiol.
2005;
289
G987-G990
71
Arnt C R, Chiorean M V, Heldebrant M P, Gores G J, Kaufmann S H.
Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ.
J Biol Chem.
2002;
277
44236-44243
72
Charlotte F, L'Hermine A, Martin N et al..
Immunohistochemical detection of bcl-2 protein in normal and pathological human liver.
Am J Pathol.
1994;
144
460-465
73
Harada K, Nakanuma Y.
Molecular mechanisms of cholangiopathy in primary biliary cirrhosis.
Med Mol Morphol.
2006;
39
55-61
74
Koukoulis G K, Shen J, Karademir S, Jensen D, Williams J.
Cholangiocytic apoptosis in chronic ductopenic rejection.
Hum Pathol.
2001;
32
823-827
75
Batt A M, Ferrari L.
Manifestations of chemically induced liver damage.
Clin Chem.
1995;
41(12 Pt 2)
1882-1887
76
Ballardini G, Guidi M, Susca M et al..
Bile duct cell apoptosis is a rare event in primary biliary cirrhosis.
Dig Liver Dis.
2001;
33
151-156
77
Fox C K, Furtwaengler A, Nepomuceno R R, Martinez O M, Krams S M.
Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis.
Liver.
2001;
21
272-279
78
Harada K, Furubo S, Ozaki S, Hiramatsu K, Sudo Y, Nakanuma Y.
Increased expression of WAF1 in intrahepatic bile ducts in primary biliary cirrhosis relates to apoptosis.
J Hepatol.
2001;
34
500-506
79
Pusl T, Beuers U.
Ursodeoxycholic acid treatment of vanishing bile duct syndromes.
World J Gastroenterol.
2006;
12
3487-3495
80
Adams D H, Afford S C.
Effector mechanisms of nonsuppurative destructive cholangitis in graft-versus-host disease and allograft rejection.
Semin Liver Dis.
2005;
25
281-297
81
Yasoshima M, Kono N, Sugawara H, Katayanagi K, Harada K, Nakanuma Y.
Increased expression of interleukin-6 and tumor necrosis factor-alpha in pathologic biliary epithelial cells: in situ and culture study.
Lab Invest.
1998;
78
89-100
82
Harada K, Ozaki S, Gershwin M E, Nakanuma Y.
Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis.
Hepatology.
1997;
26
1399-1405
83
Combes B, Carithers Jr R L, Maddrey W C et al..
Biliary bile acids in primary biliary cirrhosis: effect of ursodeoxycholic acid.
Hepatology.
1999;
29
1649-1654
84
Komichi D, Tazuma S, Nishioka T, Hyogo H, Une M, Chayama K.
Unique inhibition of bile salt-induced apoptosis by lecithins and cytoprotective bile salts in immortalized mouse cholangiocytes.
Dig Dis Sci.
2003;
48
2315-2322
85
Marzioni M, Francis H, Benedetti A et al..
Ca2 + -dependent cytoprotective effects of ursodeoxycholic and tauroursodeoxycholic acid on the biliary epithelium in a rat model of cholestasis and loss of bile ducts.
Am J Pathol.
2006;
168
398-409
86
Higuchi H, Bronk S F, Takikawa Y et al..
The bile acid glycochenodeoxycholate induces trail-receptor 2/DR5 expression and apoptosis.
J Biol Chem.
2001;
276
38610-38618
87
Benedetti A, Alvaro D, Bassotti C et al..
Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver.
Hepatology.
1997;
26
9-21
88
Takikawa Y, Miyoshi H, Rust C et al..
The bile acid-activated phosphatidylinositol 3-kinase pathway inhibits Fas apoptosis upstream of bid in rodent hepatocytes.
Gastroenterology.
2001;
120
1810-1817
89
Higuchi H, Miyoshi H, Bronk S F, Zhang H, Dean N, Gores G J.
Bid antisense attenuates bile acid-induced apoptosis and cholestatic liver injury.
J Pharmacol Exp Ther.
2001;
299
866-873
90
Yerushalmi B, Dahl R, Devereaux M W, Gumpricht E, Sokol R J.
Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition.
Hepatology.
2001;
33
616-626
91
Que F G, Phan V A, Phan V H, LaRusso N F, Gores G J.
GUDC inhibits cytochrome c release from human cholangiocyte mitochondria.
J Surg Res.
1999;
83
100-105
92
Yasoshima M, Tsuneyama K, Harada K, Sasaki M, Gershwin M E, Nakanuma Y.
Immunohistochemical analysis of cell-matrix adhesion molecules and their ligands in the portal tracts of primary biliary cirrhosis.
J Pathol.
2000;
190
93-99
93
Desmet V J.
Vanishing bile duct disorders.
Prog Liver Dis.
1992;
10
89-121
94
Desmet V, Roskams T, Van Eyken P.
Ductular reaction in the liver.
Pathol Res Pract.
1995;
191
513-524
95 Pinzani M. Cholestasis and fibrogenesis . In: Alpini G, Alvaro D, Marzioni M, LeSage G, LaRusso N The Pathobiology of Biliary Epithelia. Georgetown, TX; Landes Biosciences 2004: 211-219
96
Caligiuri A, Glaser S, Rodgers R et al..
Endothelin 1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes.
Am J Physiol.
1998;
275
G835-G846
97
Grappone C, Pinzani M, Parola M et al..
Expression of platelet-derived growth factor in newly formed cholangiocytes during experimental biliary fibrosis in rats.
J Hepatol.
1999;
31
100-109
98
Kinnman N, Hultcrantz R, Barbu V et al..
PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury.
Lab Invest.
2000;
80
697-707
99
Milani S, Herbst H, Schuppan D, Stein H, Surrenti C.
Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease.
Am J Pathol.
1991;
139
1221-1229
100
Sedlaczek N, Jia J D, Bauer M et al..
Proliferating bile duct epithelial cells are a major source of connective tissue growth factor in rat biliary fibrosis.
Am J Pathol.
2001;
158
1239-1244
101
Milani S, Herbst H, Schuppan D, Kim K Y, Riecken E O, Stein H.
Procollagen expression by nonparenchymal rat liver cells in experimental biliary fibrosis.
Gastroenterology.
1990;
98
175-184
102
Morland C M, Fear J, McNab G, Joplin R, Adams D H.
Promotion of leukocyte transendothelial cell migration by chemokines derived from human biliary epithelial cells in vitro.
Proc Assoc Am Physicians.
1997;
109
372-382
103
Hsieh C S, Huang C C, Wu J J et al..
Ascending cholangitis provokes IL-8 and MCP-1 expression and promotes inflammatory cell infiltration in the cholestatic rat liver.
J Pediatr Surg.
2001;
36
1623-1628
104
Bergasa N V, Liau S, Homel P, Ghali V.
Hepatic Met-enkephalin immunoreactivity is enhanced in primary biliary cirrhosis.
Liver.
2002;
22
107-113
105
Bergasa N V, Sabol S L, Young III W S, Kleiner D E, Jones E A.
Cholestasis is associated with preproenkephalin mRNA expression in the adult rat liver.
Am J Physiol.
1995;
268(2 Pt 1)
G346-G354
106
Fabris L, Cadamuro M, Fiorotto R et al..
Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases.
Hepatology.
2006;
43
1001-1012
107
Alvaro D, Metalli V D, Alpini G et al..
The intrahepatic biliary epithelium is a target of the growth hormone/insulin-like growth factor 1 axis.
J Hepatol.
2005;
43
875-883
108
Ebrahimkhani M R, Kiani S, Oakley F et al..
Naltrexone, an opioid receptor antagonist, attenuates liver fibrosis in bile duct ligated rats.
Gut.
2006;
55
1606-1616
109
Omenetti A, Yang L, Li Y X et al..
Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation.
Lab Invest.
2007;
87
499-514
110
Omenetti A, Li Y X, Chen W, Gainetnidov R R, Yang L, Diehl A M.
Cross-talk between hepatic stellate cells and cholangiocytes regulates biliary growth through serotonin.
Hepatology.
2006;
44
A392
111
Benyon R C, Iredale J P, Goddard S, Winwood P J, Arthur M J.
Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver.
Gastroenterology.
1996;
110
821-831
112
Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores G J.
Apoptotic body engulfment by a human stellate cell line is profibrogenic.
Lab Invest.
2003;
83
655-663
113
Fadok V A, Bratton D L, Konowal A, Freed P W, Westcott J Y, Henson P M.
Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.
J Clin Invest.
1998;
101
890-898
114
Lauber K, Bohn E, Krober S M et al..
Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal.
Cell.
2003;
113
717-730
115
Platt N, da Silva R P, Gordon S.
Recognizing death: the phagocytosis of apoptotic cells.
Trends Cell Biol.
1998;
8
365-372
116
Welzel T M, Mellemkjaer L, Gloria G et al..
Risk factors for intrahepatic cholangiocarcinoma in a low-risk population: a nationwide case-control study.
Int J Cancer.
2007;
120
638-641
117
Srivatanakul P, Sriplung H, Deerasamee S.
Epidemiology of liver cancer: an overview.
Asian Pac J Cancer Prev.
2004;
5
118-125
118
Wu T, Leng J, Han C, Demetris A J.
The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells.
Mol Cancer Ther.
2004;
3
299-307
119
Han C, Leng J, Demetris A J, Wu T.
Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest.
Cancer Res.
2004;
64
1369-1376
120
Kim H J, Lee K T, Kim E K et al..
Expression of cyclooxygenase-2 in cholangiocarcinoma: correlation with clinicopathological features and prognosis.
J Gastroenterol Hepatol.
2004;
19
582-588
121
Han C, Wu T.
Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt.
J Biol Chem.
2005;
280
24,053-24,063
122
Nzeako U C, Guicciardi M E, Yoon J H, Bronk S F, Gores G J.
COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells.
Hepatology.
2002;
35
552-559
123
Yoon J H, Higuchi H, Werneburg N W, Kaufmann S H, Gores G J.
Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line.
Gastroenterology.
2002;
122
985-993
124
Yoon J H, Werneburg N W, Higuchi H et al..
Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism.
Cancer Res.
2002;
62
6500-6505
125
Yoon J H, Gwak G Y, Lee H S, Bronk S F, Werneburg N W, Gores G J.
Enhanced epidermal growth factor receptor activation in human cholangiocarcinoma cells.
J Hepatol.
2004;
41
808-814
126
Isomoto H, Kobayashi S, Werneburg N W et al..
Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells.
Hepatology.
2005;
42
1329-1338
127
Kobayashi S, Werneburg N W, Bronk S F, Kaufmann S H, Gores G J.
Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells.
Gastroenterology.
2005;
128
2054-2065
128
Meng F, Yamagiwa Y, Taffetani S, Han J, Patel T.
IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway.
Am J Physiol Cell Physiol.
2005;
289
C971-C981
129
Shimizu T, Yokomuro S, Mizuguchi Y et al..
Effect of transforming growth factor-beta1 on human intrahepatic cholangiocarcinoma cell growth.
World J Gastroenterol.
2006;
12
6316-6324
130
Jaiswal M, LaRusso N F, Shapiro R A, Billiar T R, Gores G J.
Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes.
Gastroenterology.
2001;
120
190-199
131
Torok N J, Higuchi H, Bronk S, Gores G J.
Nitric oxide inhibits apoptosis downstream of cytochrome C release by nitrosylating caspase 9.
Cancer Res.
2002;
62
1648-1653
132
Ishimura N, Bronk S F, Gores G J.
Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis.
Gastroenterology.
2005;
128
1354-1368
133
Xu L, Han C, Wu T.
A novel positive feedback loop between peroxisome proliferator-activated receptor-delta and prostaglandin E2 signaling pathways for human cholangiocarcinoma cell growth.
J Biol Chem.
2006;
281
33982-33996
134
Han C, Demetris A J, Michalopoulos G K, Zhan Q, Shelhamer J H, Wu T.
PPARgamma ligands inhibit cholangiocarcinoma cell growth through p53-dependent GADD45 and p21 pathway.
Hepatology.
2003;
38
167-177
135
Sirica A E, Lai G H, Endo K, Zhang Z, Yoon B I.
Cyclooxygenase-2 and ERBB-2 in cholangiocarcinoma: potential therapeutic targets.
Semin Liver Dis.
2002;
22
303-313
136
Harnois D M, Que F G, Celli A, LaRusso N F, Gores G J.
Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line.
Hepatology.
1997;
26
884-890
137
Ohashi K, Nakajima Y, Kanehiro H et al..
Ki-ras mutations and p53 protein expressions in intrahepatic cholangiocarcinomas: relation to gross tumor morphology.
Gastroenterology.
1995;
109
1612-1617
138
Tannapfel A, Sommerer F, Benicke M et al..
Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma.
Gut.
2003;
52
706-712
139
Argani P, Shaukat A, Kaushal M et al..
Differing rates of loss of DPC4 expression and of p53 overexpression among carcinomas of the proximal and distal bile ducts.
Cancer.
2001;
91
1332-1341
140
Xia X, Chukwunyere E, Gao D, Xiao Y, LeSage G.
Loss of inhibition of cell cycle progression in cholangiocarcinoma duo to aberrant localization of p27 requires phosphorylation of T153 by Akt.
Gastroenterology.
2005;
128(suppl 2)
60
Gene LeSageM.D.
Professor of Medicine, The University of Texas Houston Medical School
6431 Fannin Street, MSB 4.234, Houston, TX 77030
Email: gene.lesage@uth.tmc.edu