Subscribe to RSS
DOI: 10.1055/s-2007-992376
Dimethyldioxirane Oxidation of 2-Silyloxypyrroles: An Efficient Regiocontrolled Synthesis of 5-Hydroxy-3-pyrrolin-2-ones
Publication History
Publication Date:
21 November 2007 (online)
Abstract
A new method for the synthesis of 5-hydroxy-3-pyrrolin-2-ones is reported. Conversion of N-Boc-3-pyrrolin-2-ones into 2-triisopropylsilyloxypyrroles and ensuing oxidation with dimethyldioxirane provides the corresponding N-Boc-5-hydroxy-3-pyrrolin-2-ones in high yields.
Key words
alkaloids - lactams - oxyfunctionalization - regioselectivity - Wittig reaction
-
1a
Suzuki S.Hosoe T.Nozawa K.Kawai K.Yaguchi T.Udagawa S. J. Nat. Prod. 2000, 63: 768 -
1b
Osterhage C.Kaminsky R.König GM.Wright AD. J. Org. Chem. 2000, 65: 6412 -
1c
Agatsuma T.Akama T.Nara S.Matsumiya S.Nakai R.Ogawa H.Otaki S.Ikeda S.Saitoh Y.Kanda Y. Org. Lett. 2002, 4: 4387 -
1d
Grube A.Köck M. J. Nat. Prod. 2006, 69: 1212 -
1e
Yang Y.-L.Lu C.-P.Chen M.-Y.Chen K.-Y.Wu Y.-C.Wu S.-H. Chem. Eur. J. 2007, 13: 6985 - 2
Dittami JP.Xu F.Qi H.Martin MW.Bordner J.Decosta DL.Kiplinger J.Reiche P.Ware R. Tetrahedron Lett. 1995, 36: 4201 ; and references therein - 3
Miller SL.Tinto WF.Yang J.-P.McLean S.Reynolds WF. Tetrahedron Lett. 1995, 36: 5851 - 4
Singh SB.Goetz MA.Jones T.Bills GF.Giacobbe RA.Herranz L.Stevens-Miles S.Williams DL. J. Org. Chem. 1995, 60: 7040 -
5a
Watabe M.Machida K.Osada H. Cancer Res. 2000, 60: 5214 -
5b
Watabe M.Machida K.Osada H. J. Biol. Chem. 2002, 277: 31243 -
6a
Coleman RS.Liu P.-H. Org. Lett. 2004, 6: 577 -
6b
Yamaguchi J.Kakeya H.Uno T.Shoji M.Osada H.Hayashi Y. Angew. Chem. Int. Ed. 2005, 44: 3110 -
6c
Coleman RS.Walczak MC.Campbell EL. J. Am. Chem. Soc. 2005, 127: 16038 -
6d
Lambert TH.Danishefsky SJ. J. Am. Chem. Soc. 2006, 128: 426 -
6e
Hoye TR.Dvornikovs V. J. Am. Chem. Soc. 2006, 128: 2550 -
6f
Goh WK.Iskander G.Black DS.Kumar N. Tetrahedron Lett. 2007, 48: 2287 - 7
Iesce MR.Cermola F.Temussi F. Curr. Org. Chem. 2005, 9: 109 - 8
Shiraki R.Sumino A.Tadano K.Ogawa S. J. Org. Chem. 1996, 61: 2845 -
9a
Mase N.Nishi T.Hiyoshi M.Ichihara K.Bessho J.Yoda H.Takabe K. J. Chem. Soc., Perkin Trans. 1 2002, 707 -
9b
Clark AJ.Dell CP.McDonagh JM.Geden J.Mawdslay P. Org. Lett. 2003, 5: 2063 -
9c
Snider BB.Neubert BJ. J. Org. Chem. 2004, 69: 8952 -
9d
Ma S.Xie H. Tetrahedron 2005, 61: 251 -
9e
Issa F.Fischer J.Turner P.Coster MJ. J. Org. Chem. 2006, 71: 4703 -
9f
Alizadeh A.Movahedi F.Masrouri H.Zhu L.-G. Synthesis 2006, 3431 -
9g
Evans DA.Nagorny P.Xu R. Org. Lett. 2006, 8: 5669 -
10a
Rassu G.Zanardi F.Battistini L.Casiraghi G. Chem. Soc. Rev. 2000, 29: 109 -
10b
Curti C.Zanardi F.Battistini L.Sartori A.Rassu G.Auzzas L.Roggio A.Pinna L.Casiraghi G. J. Org. Chem. 2006, 71: 225 -
10c
Suga H.Takemoto H.Kakehi A. Heterocycles 2007, 71: 361 ; and references cited therein - For the vinylogous oxyfunctionalization of 2-silyloxyfurans with DMDO, see:
-
11a
Boukouvalas J.Lachance N. Synlett 1998, 31 -
11b
Boukouvalas J.Cheng Y.-X.Robichaud J. J. Org. Chem. 1998, 63: 228 -
11c
Boukouvalas J.Wang J.-X.Marion O.Ndzi B. J. Org. Chem. 2006, 71: 6670 -
11d
Boukouvalas J.Robichaud J.Maltais F. Synlett 2006, 2480 -
11e See also:
Marcos IS.Pedrero AB.Sexmero MJ.Diez D.García N.Escola MA.Basabe P.Conde A.Moro RF.Urones JG. Synthesis 2005, 3301 -
12a
Zanardi F.Battistini L.Rassu G.Cornia M.Casiraghi G. J. Chem. Soc., Perkin Trans. 1 1995, 2471 -
12b
Bermejo FA.Rico-Ferreira R.Bamidele-Sanni S.García-Granda S. J. Org. Chem. 2001, 66: 8287 -
12c
Wrobel MN.Margaretha P. Helv. Chim. Acta 2003, 86: 515 -
12d
Hermet J.-P.Caubert V.Langlois N. Synth. Commun. 2006, 36: 2253 -
12e
Yoon-Miller SJP.Opalka SM.Pelkey ET. Tetrahedron Lett. 2007, 48: 827 -
12f
Albrecht D.Bach T. Synlett 2007, 1557 -
14a
Adam W.Bialas J.Hadjiarapoglou L. Chem. Ber. 1991, 124: 2377 -
14b
Murray RW.Singh M. Org. Synth., Coll. Vol. IX Wiley; New York: 1998. p.288 - 16 Epoxides have been obtained from reactions of DMDO with indoles:
Zhang X.Foote CS. J. Am. Chem. Soc. 1993, 115: 8867 - 18 For the removal of the Boc group from compounds 6b,c using neat TFA at 0 °C, see:
Yakushijin K.Suzuki R.Hattori R.Furukawa H. Heterocycles 1981, 16: 1157 - 19
Masuko M.Miyamoto K.Sakurai K.Iino M.Takeuchi Y.Hashimoto T. Phytochemistry 1983, 22: 1278
References and Notes
Typical Procedure: To a solution of 4a (732 mg, 4.0 mmol) in anhyd CH2Cl2 (5 mL) were added 2,6-lutidine (1.290 g, 12.0 mmol) and TIPSOTf (1.232 g, 4.54 mmol) under nitrogen at r.t. After stirring for 30 min, the solvent was evaporated and the residue was purified by flash chromatog-raphy on silica gel (hexanes-EtOAc, 95:5) to give 5a (1.263 g, 93%) as a colorless oil. For smaller-scale reactions, purification was carried out by chromatography on basic silica gel.11c
Data for 5a: 1H NMR (300 MHz, CDCl3): δ = 1.10 (d, J = 7.2 Hz, 18 H), 1.25 (hept, J = 7.2 Hz, 3 H), 1.54 (s, 9 H), 5.21 (dd, J = 1.7, 3.6 Hz, 1 H), 5.86 (dd, J = 1.7, 3.6 Hz, 1 H), 6.67 (t, J = 3.6 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 12.4, 17.9, 27.8, 82.4, 91.7, 107.6, 112.5, 143.6, 148.1. HRMS: m/z calcd for C18H33NO3Si: 339.2230; found: 339.2233.
Typical Procedure: To a solution of 5a (339 mg, 1.0 mmol) in anhyd CH2Cl2 (5 mL) at -78 °C was added dropwise a solution of DMDO (0.055 M in acetone, 20 mL, 1.1 equiv) and the reaction mixture was stirred for 1 h at -78 °C. The volatiles were evaporated and the residue was dissolved in acetone (10 mL). After addition of H2O (7 mL) and Amberlyst-15 (ca. 100 mg), the reaction mixture was stirred for 1 h at r.t. The mixture was filtered, the filtrate was extracted with Et2O (3 × 10 mL) and the combined organic layers were dried over anhyd MgSO4. After evaporation of the volatiles, the residue was purified by flash chromatog-raphy on silica gel (hexanes-EtOAc, 7:3) to furnish 6a (187 mg, 94%) as a white solid (mp 100-101 °C). 1H NMR (300 MHz, CDCl3): δ = 1.54 (s, 9 H), 4.32 (br d, J = 4.8 Hz, 1 H), 5.96 (br m, 1 H), 6.07 (d, J = 6.4 Hz, 1 H), 7.02 (dd, J = 4.8, 6.4 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 28.0, 82.0, 83.8, 128.3, 146.3, 149.9, 166.4. Anal. Calcd for C9H13NO4: C, 54.26; H, 6.58; N, 7.03. Found: C, 54.62; H, 6.53; N, 7.00.
17Data for 6f: mp 62-64 °C. 1H NMR (300 MHz, CDCl3): δ = 1.53 (s, 9 H), 1.54 (br s, 3 H), 1.63 (br s, 3 H), 2.74 (dd, J = 6.8, 14.5 Hz, 1 H), 2.90 (dd, J = 8.3, 14.5 Hz, 1 H), 4.42 (br s, 1 H), 4.86 (dd, J = 6.8, 8.3 Hz, 1 H), 6.03 (d, J = 6.0 Hz, 1 H), 7.00 (d, J = 6.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 17.8, 25.7, 27.8, 36.5, 83.7, 92.6, 116.2, 126.6, 136.4, 145.3, 150.3 (2 × C), 166.6. Anal. Calcd for C14H21NO4: C, 62.90; H, 7.92; N, 5.24. Found: C, 62.84; H, 7.87; N, 5.16.
20Data for 8: colorless oil. 1H NMR (300 MHz, CDCl3): δ = 1.27 (t, J = 7.0 Hz, 3 H), 1.45 (s, 9 H), 2.00 (s, 3 H), 4.20 (q, J = 7.0 Hz, 2 H), 6.78 (d, J = 11.7 Hz, 1 H), 6.91 (dd, J = 11.7, 11.7 Hz, 1 H), 7.69 (br s, 1 H), 8.11 (d, J = 11.7 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 12.6, 14.1, 27.8, 60.8, 82.6, 123.6, 132.3, 135.3, 137.3, 150.3, 165.5, 167.8. HRMS: m/z [M + H+] calcd for C14H22NO5: 284.1498; found: 284.1502.