Zusammenfassung
Die Positronen-Emissions-Tomografie (PET) hat einen wichtigen Stellenwert in der modernen Strahlentherapie erlangt. Die Integration der funktionellen PET-Daten in die Bestrahlungsplanung wurde durch die Fusion von CT und PET in einem Gerät wesentlich erleichtert. Entwicklungs- und Optimierungsbedarf besteht jedoch in der Definition der Tumorgrenzen im PET und im Umgang mit Atembewegungen. Neben dem am häufigsten zur Anwendung kommenden Radiopharmakon 18 F-Fluordesoxyglukose (FDG) sind die Anwendung von Hypoxiemarkern und Radiotracerentwicklungen für die Visualisierung anderer definierter radiobiologischer Resistenzmechanismen wünschenswert.
Abstract
Positron emission tomography (PET) has evolved as an important tool in modern radiotherapy. Integration of functional PET data into radiation treatment planning is facilitated due to PET-CT scanner, optimizing data fusion. Optimization of definition of tumour borders and reduction of movement artifacts is warranted. Besides the application of 18 F-fluorodeoxyglucose (FDG) utilization of tracers visualizing hypoxia and the development of novel tracers depicting other defined biological mechanisms of radioresistance is a promising avenue for future research.
Schlüsselwörter
PET / CT - FDG - Bestrahlungsplanung - Strahlenbiologie - Hypoxie - Theragnostics
Key words
PET / CT - FDG - radiation treatment planning - radiation biology - hypoxia - theragnostics
Literatur
1
Ang K K, Berkey B A, Tu X. et al .
Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma.
Cancer Res.
2002;
62
7350-7356
2
Beck R, Roper B, Carlsen J M. et al .
Pretreatment 18 F-FAZA PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine.
J Nucl Med.
2007;
48
973-980
3
Beyer T, Townsend D W, Brun T. et al .
A combined PET / CT scanner for clinical oncology.
J Nucl Med.
2000;
41
1369-1379
4
Bonner J A, Harari P M, Giralt J. et al .
Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck.
N Engl J Med.
2006;
354
567-578
5
Cai W, Ebrahimnejad A, Chen K. et al .
Quantitative radioimmuno PET imaging of EphA2 in tumor-bearing mice.
Eur J Nucl Med Mol Imaging.
2007;
34
850-858
6
Caldwell C B, Mah K, Ung Y C. et al .
Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18 FDG-hybrid PET fusion.
Int J Radiat Oncol Biol Phys.
2001;
51
923-931
7
De Ruysscher D, Wanders S, van Haren E. et al .
Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study.
Int J Radiat Oncol Biol Phys.
2005;
62
988-994
8
Duong C P, Hicks R J, Weih L. et al .
FDG-PET status following chemoradiotherapy provides high management impact and powerful prognostic stratification in oesophageal cancer.
Eur J Nucl Med Mol Imaging.
2006;
33
770-778
9
Gould M K, Kuschner W G, Rydzak C E. et al .
Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis.
Ann Intern Med.
2003;
139
879-892
10
Grosu A L, Piert M, Weber W A. et al .
Positron emission tomography for radiation treatment planning.
Strahlenther Onkol.
2005;
181
483-499
11
Grosu A L, Souvatzoglou M, Roper B. et al .
Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer.
Int J Radiat Oncol Biol Phys.
2007;
69
541-551
12
Holthusen H.
Erfahrungen über die Verträglichkeitsgrenzen für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden.
Strahlentherapie.
1936;
57
254-268
13
Krause B, Beyer T, Bockisch A. et al .
FDG-PET / CT in der Onkologie. Leitlinie.
Nuklearmedizin.
2007;
, DOI: 103413/nukmed-0282
14
Krause M, Zips D, Thames H D, Kummermehr J, Baumann M.
Preclinical evaluation of molecular-targeted anticancer agents for radiotherapy.
Radiother Oncol.
2006;
80
112-122
15
Ling C C, Humm J, Larson S. et al .
Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality.
Int J Radiat Oncol Biol Phys.
2000;
47
551-560
16
Milas L, Fan Z, Andratschke N H, Ang K K.
Epidermal growth factor receptor and tumor response to radiation: in vivo preclinical studies.
Int J Radiat Oncol Biol Phys.
2004;
58
966-971
17
Nestle U, Kremp S, Grosu A L.
Practical integration of [18 F]-FDG-PET and PET / CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives.
Radiother Oncol.
2006;
81
209-225
18
Nestle U, Kremp S, Schaefer-Schuler A. et al .
Comparison of different methods for delineation of 18 F-FDG-PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer.
J Nucl Med.
2005;
46
1342-1348
19
Nordsmark M, Overgaard M, Overgaard J.
Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck.
Radiother Oncol.
1996;
41
31-39
20
Pötzsch C, Hofheinz F, van den Hoff J.
Fast user guided segmentation and quantification of volumes in 3-d datasets.
Molecular Imaging and Biology.
2005;
7
152
21
Quennet V, Yaromina A, Zips D. et al .
Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice.
Radiother Oncol.
2006;
81
130-135
22
Rischin D, Hicks R J, Fisher R. et al .
Prognostic significance of [18 F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02.
J Clin Oncol.
2006;
24
2098-2104
23
Rosenzweig K E, Sura S, Jackson A, Yorke E.
Involved-Field Radiation Therapy for Inoperable Non Small-Cell Lung Cancer.
J Clin Oncol.
2007;
24
Sasaki R, Komaki R, Macapinlac H. et al .
[18 F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer.
J Clin Oncol.
2005;
23
1136-1143
25
Schütze C, Bergmann R, Yaromina A. et al .
Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice.
Radiother Oncol.
2007;
83
311-315
26
Troost E G, Vogel W V, Merkx M A. et al .
18 F-FLT-PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients.
J Nucl Med.
2007;
48
726-735
27
van Baardwijk A, Bosmans G, Boersma L. et al .
PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes.
Int J Radiat Oncol Biol Phys.
2007;
68
771-778
28 Wüllrich K, Gabrys D, Hofheinz F. et al .Bewertung der FDG-Aufnahme in Abhängigkeit von Proliferation und Hypoxie: Untersuchung in 2 humanen Tumormodellen auf Nacktmäusen mit PET, Autoradiographie und funktioneller Histologie. Proceedings des 16. Symposiums Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Dresden, 01.-03. März 2007. 2007; 41-45
29
Yaromina A, Zips D, Thames H D. et al .
Pimonidazole labelling and response to fractionated irradiation of five human squamous cell carcinoma (hSCC) lines in nude mice: the need for a multivariate approach in biomarker studies.
Radiother Oncol.
2006;
81
122-129
30
Yuan S, Yu J, Sub X, Li M.
Three-dimensional conformal involved-field radiotherapy for stage III non-small cell lung cancer.
Journal of Clinical Oncology.
2006;
24
, Abstract 7044
Dr. B. Beuthien-Baumann
Klinik und Poliklinik für Nuklearmedizin · Universitätsklinikum
Fetscherstr. 74
01307 Dresden
Telefon: +49 / 3 51 / 2 60 27 55
eMail: b.beuthien@fzd.de