Subscribe to RSS
DOI: 10.1055/s-2008-1032026
Tetraalkylammonium Dichloroiodates as Iodinating Agents: Absence of Activity in Solid Phases and Superelectrophilic Activity in Sulfuric Acid
Publication History
Publication Date:
10 January 2008 (online)
![](https://www.thieme-connect.de/media/synthesis/200803/lookinside/thumbnails/10.1055-s-2008-1032026-1.jpg)
Abstract
In contrast to published results, tetraalkylammonium dichloroiodates (Alk4N+ICl2 -) cannot be iodinating reagents for arenes in solvent-free conditions. Nevertheless, tetraalkylammonium dichloroiodates in sulfuric acid solutions or in the presence of Ag2SO4 in H2SO4 possess superelectrophilic properties and act as very convenient and efficient iodinating agents for deactivated arenes.
Key words
aromatic iodides - tetraalkylammonium dichloroiodates - iodinating agents
-
1a
Li JJ.Gribble GW. Palladium in Heterocyclic Chemistry, Tetrahedron Organic Chemistry Series Vol. 20: Pergamon; Amsterdam: 2000. -
1b
Soderberg BCG. Coord. Chem. Rev. 2004, 248: 1085 -
1c
Kotha S.Lahiri K.Kashinath D. Tetrahedron 2002, 58: 9633 -
1d
Bellina F.Carpita A.Rossi R. Synthesis 2004, 2419 -
1e
Guiry P.Kiely D. Curr. Org. Chem. 2004, 8: 781 -
1f
Prajapati D.Gohain M. Tetrahedron 2004, 60: 815 -
1g
de Vries JG. Can. J. Chem. 2001, 79: 1086 -
1h
Cacchi S.Fabrizi G.Goggiomani A. Heterocycles 2002, 56: 613 -
2a
Yu S.-B.Watson AD. Chem. Rev. 1999, 99: 2353 -
2b
Dewanjee MK. Radioiodination: Theory, Practice and Biomedical Applications Kluwer Academic Publishers; Boston: 1992. p.118 - 3
Merkushev EB. Synthesis 1988, 923 -
4a
Kajigaeshi S.Yamasaki H.Fujisaki S.Kondo M.Okamoto T. Chem. Lett. 1987, 2109 -
4b
Kajigaeshi S.Kakinami T.Moriwaki M.Watanabe M.Fujisaki S. Chem. Lett. 1988, 795 -
4c
Kajigaeshi S.Kakinami T.Moriwaki M.Tanaka T.Fujisaki S.Okamoto T. Bull. Chem. Soc. Jpn. 1989, 62: 439 -
4d
Kajigaeshi S.Kakinami T.Watanabe F.Okamoto T. Bull. Chem. Soc. Jpn. 1989, 62: 1349 -
4e
Kajigaeshi S.Kakinami T.Yamasaki H.Fujisaki S.Okamoto T. Bull. Chem. Soc. Jpn. 1988, 61: 600 -
5a
Vlassa M.Silberg IA.Custelceanu R.Culea M. Synth. Commun. 1995, 25: 3493 -
5b
Kosynkin DV.Tour JM. Org. Lett. 2001, 3: 991 -
5c
Kimball DB.Weakley TJR.Herges R.Haley MM. J. Am. Chem. Soc. 2002, 124: 13463 -
5d
Kimball DB.Weakley TJR.Haley MM. J. Org. Chem. 2002, 67: 6395 - 6
Hajipour AR.Arbabian M.Ruoho AE. J. Org. Chem. 2002, 67: 8622 - 7
Brasholz M.Reissig HU. Synlett 2004, 2736 -
8a
Krasnokutskaya EA.Lesina YuA.Gorlushko DA.Filimonov VD. Russ. J. Org. Chem. 2005, 41: 855 -
8b
Krasnokutskaya EA.Trusova ME.Filimonov VD. Russ. J. Org. Chem. 2005, 41: 1788 - 9
Tilve RD.Alexander VM.Khadilkar BM. Tetrahedron Lett. 2002, 43: 9457 - 10
Yusubov MS.Tveryakova EN.Krasnokutskaya EA.Perederina IA.Zhdankin VV. Synth. Commun. 2007, 37: 1259 -
11a
For example, the NMR spectra for 4-iodoanisole given in the paper6 differ sharply from those published in other papers (see ref.11b) - there are only six 13C signals instead of five, and carbons are missing at appropriate shifts to be next to iodine and OCH3 group (δ = 82.5 and 159.4). In the 13C NMR spectrum6 of 3-iodo-4-methoxybenzyl alcohol there are no Caryl-I and Caryl-OCH3 (δ = 89 and 156) signals as well. The reported melting point (mp 142-144 °C) of 3-iodo-4-methoxybenzyl alcohol indicated in the paper6 is totally different from those previously published (mp 84 °C,11c mp 81-82 °C11d), and similar inconsistence is observed for 4-iodo-1,2-dimethoxybenzene (mp 77-78 °C,6 mp 33 °C,11e mp 33-34 °C4b). The authors of the paper6 refer to the reference 5b in order to confirm the melting point (mp 142-144 °C), but this paper5b does not have any data on this compound. In the 13C NMR spectrum for 3-(3-iodo-4-aminophenyl)propionic acid in the paper,6 the chemical shift for Caryl-I (δ = 80-90) is absent. The MS data for m-iodo-cocaine indicated in the paper6 are in sharp contradiction with the previously published data.11f
-
11b
dos Santos ML.de Magalhaes GC.Filho Braz R. J. Organomet. Chem. 1996, 526: 15 -
11c
Gaux B.le Henaff P. Bull. Soc. Chim. Fr. 1974, 505 -
11d
Pavlinac J.Zupan M.Stavber S. J. Org. Chem. 2006, 71: 1027 -
11e
Seer K. Monatsh. Chem. 1913, 34: 631 -
11f
Yu DW.Gatley SJ.Wolf AP.MacGregor RR.Dewey SL.Fowler JS.Schlyer DJ. J. Med. Chem. 1992, 35: 2178 - 12
Chaikovskii VK.Filimonov VD.Kharlova TS.Chernova TN.Sharapova E. Russ. J. Org. Chem. 2000, 36: 666 -
13a
Olah GA.Wang Q.Sandford G.Prakash GKS. J. Org. Chem. 1993, 58: 3194 -
13b
Chaikovski VK.Skorokhodov VI.Filimonov VD. Russ. J. Org. Chem. 2001, 37: 1503 -
13c
Chaikovski VK.Filimonov VD.Yagovkin AY.Kharlova TS. Tetrahedron Lett. 2000, 41: 9101 -
13d
Chaikovski VK.Kharlova TS.Filimonov VD.Saryucheva TA. Synthesis 1999, 748 - 14
Filimonov VD.Krasnokutskaya EA.Poleshuk OK.Lesina YuYu.Chaikovski VK. Russ. Chem. Bull. 2006, 55: 1328 - 15
Wescott LD.Mattern DL. J. Org. Chem. 2003, 68: 10058 - 16
Lulinski P.Sosnowski M.Skulski L. Molecules 2005, 10: 516 - 17
Haszeldine RN.Sharpe AG. J. Chem. Soc. 1952, 993 - 18
Kraszkiewicz K.Sosnowski M.Skulski L. Synthesis 2006, 1195 - 19
Kaufler F. Ber. Dtsch. Chem. Ges. 1904, 37: 59 - 20
Lulinski P.Kryska A.Sosnowski M.Skulski L. Synthesis 2004, 441 - 21
Klemme CJ.Hunter J. H. J. Org. Chem. 1940, 5: 227 - 22
The Aldrich Catalog/Handbook of Fine Chemicals
Aldrich;
Milwaukee:
2007-2008.