Subscribe to RSS
DOI: 10.1055/s-2008-1032049
An Approach to Cannabinoids by Radical Cyclisation of 1,7-Dienes Using Diethyl Thiophosphite
Publication History
Publication Date:
16 January 2008 (online)
Abstract
Various 1,7-dienes, prepared efficiently in five steps from salicylaldehyde, react with diethyl thiophosphite (in the presence of AIBN) to form substituted chromans, which are potential precursors to cannabinoids. The influence of the substitution of the 1,7-diene on the efficiency of the radical cyclisation is discussed.
Key words
addition reactions - cyclisations - ethers - radical reactions - substituent effects
-
1a
Fichera M.Cruciani G.Bianchi A.Musumarra G. J. Med. Chem. 2000, 43: 2300 -
1b
Turner CE.Elsohly MA.Boeren EG. J. Nat. Prod. 1980, 43: 169 - See for example:
-
2a
Keimowitz AR.Martin BR.Razdan RK.Crocker PJ.Mascarella SW.Thomas BF. J. Med. Chem. 2000, 43: 59 -
2b
Howlett AC.Barth F.Bonner TI.Cabral G.Casellas P.Devane WA.Felder CC.Herkenham M.Mackie K.Martin BR.Pertwee RG. Pharmacol. Rev. 2002, 54: 161 -
2c
Salo OMH.Raitio KH.Savinainen JR.Nevalainen T.Lahtela-Kakkonen M.Laitinen JT.Järvinen T.Poso A. J. Med. Chem. 2005, 48: 7166 - For some previous synthetic approaches to cannabinoids, see:
-
3a
Papahatjis DP.Kourouli T.Abadji V.Goutopoulos A.Makriyannis A. J. Med. Chem. 1998, 41: 1195 -
3b
Papahatjis DP.Nikas SP.Kourorli T.Chari R.Xu W.Pertwee RG.Makriyannis A. J. Med. Chem. 2003, 46: 3221 -
3c
Sun H.Mahadevan A.Razdan RK. Tetrahedron Lett. 2004, 45: 615 -
3d
Chu C.Ramamurthy A.Makriyannis A.Tius MA. J. Org. Chem. 2003, 68: 55 -
3e
Evans DA.Barnes DM.Johnson JS.Lectka T.von Matt P.Miller SJ.Murry JA.Norcross RD.Shaughnessy EA.Campos KR. J. Am. Chem. Soc. 1999, 121: 7582 -
3f
Lesch B.Toräng J.Nieger M.Bräse S. Synthesis 2005, 1888 -
3g
Nikas SP.Thakur GA.Parrish D.Alapafuja SO.Huestis MA.Makriyannis A. Tetrahedron 2007, 63: 8112 - 4
Mahadevan A.Siegel C.Martin BR.Abood ME.Beletskaya I.Razdan RK. J. Med. Chem. 2000, 43: 3778 - For related addition reactions of phosphorus-centred radicals, see:
-
5a
Jessop CM.Parsons AF.Routledge A.Irvine DJ. Eur. J. Org. Chem. 2006, 1547 -
5b
Jessop CM.Parsons AF.Routledge A.Irvine D. Tetrahedron Lett. 2003, 44: 479 -
5c
Jessop CM.Parsons AF.Routledge A.Irvine DJ. Tetrahedron Lett. 2004, 45: 5095 -
5d
Cho DH.Jang DO. Synlett 2005, 59 -
5e
Hunt TA.Parsons AF.Pratt R. J. Org. Chem. 2006, 71: 3656 -
5f
Montchamp J.-L. J. Organomet. Chem. 2005, 690: 2388 -
5g
Leca D.Fensterbank L.Lacôte E.Malacria M. Chem. Soc. Rev. 2005, 34: 858 -
5h
Parsons AF.Sharpe DJ.Taylor P. Synlett 2005, 2981 -
5i
Hunt T.Parsons AF.Pratt R. Synlett 2005, 2978 -
5j
Healy MP.Parsons AF.Rawlinson JGT. Org. Lett. 2005, 7: 1597 -
5k
Carta P.Puljic N.Robert C.Dhimane A.-L.Fensterbank L.Lacote E.Malacria M. Org. Lett. 2007, 9: 1061 - For complementary 6-exo-trig radical cyclisation approaches to tetrahydropyrans, see:
-
6a
Lee E. Pure Appl. Chem. 2005, 77: 2073 -
6b
Hiramatsu N.Takahashi N.Noyori R.Mori Y. Tetrahedron 2005, 61: 8589 -
6c
Hartung J.Gottwald T. Tetrahedron Lett. 2004, 45: 5619 -
6d
Evans PA.Roseman JD. Tetrahedron Lett. 1997, 38: 5249 -
6e
Leeuwenburgh MA.Litjens REJN.Codée JDC.Overkleeft HS.van der Marel GA.van Boom JH. Org. Lett. 2000, 2: 1275 -
6f
Burke SD.Rancourt J. J. Am. Chem. Soc. 1991, 113: 2335 - See for example:
-
8a
Journet M.Lacôte E.Malacria M. J. Chem. Soc., Chem. Commun. 1994, 461 -
8b
Maulide N.Markov IE. Chem. Commun. 2006, 1200 - For other examples of 6-exo cyclisations of benzylic radicals, see:
-
11a
Studer A. Angew Chem. Int. Ed. 2000, 1108 -
11b
Pattenden G.Reddy LK.Walter A. Tetrahedron Lett. 2004, 45: 4027 -
11c
Binot G.Quiclet-Sire B.Saleh T.Zard SZ. Synlett 2003, 382 - Resonance-stabilised radicals are known to undergo reversible cyclisations. See for example:
-
12a
Walling C.Cioffari A. J. Am. Chem. Soc. 1972, 94: 6064 -
12b
Julia M. Acc. Chem. Res. 1971, 4: 386 -
12c
Julia M. Pure Appl. Chem. 1974, 40: 553 - 15 For a related cyclisation, see:
Samarat A.Landais Y.Amri H. Tetrahedron Lett. 2004, 45: 2049
References and Notes
All new compounds gave consistent spectral and high resolution mass spectroscopic data.
9( Z )-1-(2-Methylpent-3-en-2-yloxy)-2-vinylbenzene (13a): yellow oil. IR (CDCl3): 3085, 3065, 2958, 2927, 1603, 1487, 1456, 1439, 1377, 1174, 1120 cm-1. 1H NMR (400 MHz, CDCl3): δ = 6.80-7.70 (m, 4 H, 4 × ArCH), 7.10 (dd, J = 17.5, 11.0 Hz, 1 H, CH=CHAHB), 5.72 (dd, J = 17.5 1.5 Hz, 1 H, CH=CH AHB), 5.64 (dq, J = 12.0, 1.5 Hz, 1 H, CH=CHMe), 5.54 (dq, J = 12.0, 7.0 Hz, 1 H, CH=CHMe), 5.22 (dd, J = 11.0, 1.5 Hz, 1 H, CH=CHA H B), 1.70 (d, J = 7.0 Hz, 3 H, Me), 1.53 (s, 6 H, MeCMe). 13C NMR (100 MHz, CDCl3): δ = 153.5 (ArCO), 135.1, 132.0, 128.4, 127.4, 126.1, 120.7, 118.1 (4 × ArCH, CH=CHAHB, CH=CHMe), 128.6 (ArCCH=C), 113.7 (CH=CHAHB), 79.4 (MeCMe), 28.8 (MeCMe), 13.7 (CH=CHMe). MS (CI, NH3): m/z (%) = 203 (8) [MH+], 83 (100). HRMS (CI): m/z calcd for C14H19O [M + H+]: 203.1436; found: 203.1436.
10Synthesis of O , O -Diethyl (3-Ethyl-2,2-dimethyl-3,4-dihydro-2 H -chromen-4-yl)methylphosphonothioate (14a): 1,7-Diene 13a (0.150 g, 0.74 mmol, 1 equiv), diethyl thiophosphite (0.114 g, 0.74 mmol, 1 equiv) and AIBN (0.097 g, 0.59 mmol, 0.8 equiv, 1 portion) were heated to reflux in degassed cyclohexane (20 mL) overnight. After cooling to r.t., the solvent was evaporated and purification of the crude product by column chromatography (silica, petrol) afforded 14a (0.073 g, 28%) as a colourless oil, as an inseparable 1:1 mixture of cis- and trans-diastereoisomers as indicated by the 1H NMR spectrum. IR (CH2Cl2): 3055, 2983, 2937, 2904, 2879, 1606, 1581, 1487, 1452, 1387, 1371, 1302, 1261, 1225, 1159, 1026 cm-1. 1H NMR (400 MHz, CDCl3; both diastereoisomers): δ = 7.40, 7.29 (2 × d, 2 × J = 8.0 Hz, 1 H, ArCH), 7.11, 7.09 (2 × t, 2 × J = 8.0 Hz, 1 H, ArCH), 6.98, 6.86 (2 × t, 2 × J = 8.0 Hz, 1 H, ArCH), 6.78, 6.74 (2 × d, 2 × J = 8.0 Hz, 1 H, ArCH), 3.96-4.28 (m, 4 H, 2 × OCH 2Me), 3.58, 3.32 (2 × app. ddt, J = 19.0, 6.0, 5.0 Hz and J = 24.0, 5.5, 5.0 Hz, 1 H, PCHAHBCH), 2.40-2.62, 2.27 (m and app. td, J = 16.0, 5.0 Hz, 2 H, PCH A H B), 1.19-1.83 (m, 15 H, MeCMe, CHCH 2Me, 2 × OCH2 Me), 1.04, 1.02 (2 × t, 2 × J = 7.5 Hz, 3 H, CHCH2 Me). 13C NMR (100 MHz, CDCl3; both diastereoisomers): δ = 153.6, 152.9 (ArCO), 127.8, 127.7, 127.5, 2 × 125.7 (2 × d, 3 J CP = 10.5, 7.0 Hz, PCHAHBCHArC), 120.5, 120.0, 2 × 117.3 (4 × ArCH), 78.7 (MeCMe), 62.7, 62.6, 62.3, 62.2 (4 × d, 2 J CP = 4 × 7.0 Hz, 2 × OCH2Me), 48.1 (d, 3 J CP = 5.5 Hz, PCHAHBCHCH), 42.3, 34.6 (2 × d, 1 J CP = 109.0, 110.5 Hz, PCHAHB), 33.1, 32.0 (2 × d, 2 J CP = 2.5, 1.5 Hz, PCHAHB CH), 28.7, 27.8, 26.3, 24.3 (MeCMe), 23.2, 19.5 (CHCH2Me), 3 × 16.2, 16.1 (4 × d, 3 J CP = 4 × 7.0 Hz, 2 × OCH2 Me), 14.2, 13.7 (CHCH2 Me). MS (CI, NH3): m/z (%) = 357 (100) [MH+]. HRMS (CI): m/z calcd for C18H30O3PS [M + H+]: 357.1653; found: 357.1652.
13Synthesis of Methyl 2-{4-[(Diethoxyphosphoro-thioyl)methyl]-2,2-dimethyl-3,4-dihydro-2 H -chromen-3-yl}acetate (14c): 1,7-Diene 13c (0.250 g, 1.02 mmol, 1 equiv), diethyl thiophosphite (0.782 g, 5.08 mmol, 5 equiv) and AIBN (0.042 g, 0.25 mmol, 0.25 equiv, 5 portions, 1 h between additions) were heated to reflux in anhyd degassed THF (20 mL) overnight. After cooling to r.t., the solvent was evaporated and excess diethyl thiophosphite was removed by distillation (75 °C/3 mmHg). Purification of the residue by column chromatography (silica; PE-Et2O, 9:1) afforded 14c (0.221 g, 54%) as a yellow oil. IR (CH2Cl2): 2982, 2953, 2853, 1735, 1608, 1582, 1488, 1453, 1437, 1388, 1372, 1302, 1249, 1228, 1170, 1138, 1116, 1098, 1026 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.48 (d, J = 7.5 Hz, 1 H, ArCH), 7.11 (t, J = 7.5 Hz, 1 H, ArCH), 6.90 (t, J = 7.5 Hz, 1 H, ArCH), 6.76 (d, J = 7.5 Hz, 1 H, ArCH), 4.06-4.28 (m, 4 H, 2 × OCH 2Me), 3.70 (s, 3 H, CO2Me), 3.05-3.18 (m, 1 H, PCH2CH), 2.69 (dd, J = 16.0, 3.5 Hz, 1 H, CH AHB), 2.32-2.55 (m, 4 H, PCH 2CHCHCHA H B), 1.35 (s, 3 H, MeCMe), 1.34 (t, J = 7.0 Hz, 6 H, 2 × OCH2 Me), 1.21 (s, 3 H, MeCMe). 13C NMR (100 MHz, CDCl3): δ = 173.6 (CO2Me), 152.6 (ArCO), 129.3, 127.7, 120.7, 117.3 (4 × ArCH), 125.5 (d, 3 J CP = 7.5 Hz, PCH2CHArC), 76.8 (MeCMe), 62.8, 62.6 (2 × d, 2 J CP = 2 × 7.0 Hz, 2 × OCH2Me), 51.9 (CO2 Me), 44.1 (d, 3 J CP = 7.0 Hz, PCH2CHCH), 41.3 (d, 1 J CP = 111.0 Hz, PCH2), 35.6 (CH2CO2), 33.6 (d, 2 J CP = 1.5 Hz, PCH2 CH), 27.3, 21.7 (MeCMe), 16.2, 16.1 (2 × d, 3 J CP = 2 × 7.0 Hz, 2 × OCH2 Me). MS (CI, NH3): m/z (%) = 401 (100) [MH+]. HRMS (CI): m/z calcd for C19H29O5PS [M + H+]: 401.1552; found: 401.1551.
144-(2,2-Diphenylvinyl)-3-ethyl-2,2-dimethylchromane (15): colourless oil (6.5:1 mixture of diastereoisomers). IR (CH2Cl2): 3019, 2958, 2931, 1598, 1581, 1484, 1451, 1386, 1302, 1148, 1030 cm-1. 1H NMR (400 MHz, CDCl3; both diastereoisomers): δ = 7.20-7.42 (m, 11 H, 11 × ArCH), 7.11 (t, J = 7.0 Hz, 1 H, ArCH), 6.85 (t, J = 7.0 Hz, 1 H, ArCH), 6.77 (d, J = 7.0 Hz, 1 H, ArCH), 6.29, 5.95 (2 × d, J = 2 × 10.5 Hz, 1 H, cis-C=CH and trans-C=CH), 3.42 (app. t, J = 10.5 Hz, 1 H, CHCH=C), 1.54 (dt, J = 10.5, 4.5 Hz, 1 H, CHCH2Me), 0.98, 1.42 (2 × s, 2 × 3 H, MeCMe), 1.20-1.40 (m, 2 H, CH 2Me), 0.80-0.92 (m, 3 H, CH2 Me). 13C NMR (100 MHz, CDCl3; both diastereoisomers): δ = 153.1 (ArCO), 143.2, 142.3, 139.8 (3 × ArC), 131.1, 2 × 129.6, 2 × 128.4, 2 × 128.2, 127.8, 2 × 127.3, 2 × 127.2, 124.1, 119.7, 117.0 (14 × ArCH, C=CH), 78.0 (MeCMe), 48.9 (CHCH2Me), 40.1 (CHCH=C), 28.3 (MeCMe), 23.6 (CH2Me), 20.3 (MeCMe), 15.2 (CH2 Me). MS (CI, NH3): m/z (%) = 369 (45) [MH+], 357 (100). HRMS (CI): m/z calcd for C27H28O [M + H+]: 369.2218; found: 369.2217.