Abstract
An easy synthesis of 2,3-di-/1,2,3-trisubstituted indolizines has been developed via a formal [3+2] annulation of α-EWG ketene S ,S -acetals with 2-pyridine-/2-quinolinecarbaldehyde. The disubstituted products are formed via an intramolecular aza-Michael addition and subsequent elimination of acetic acid, followed by desulfenylation assisted by acetic acid, whereas the trisubstituted products are obtained via a similar conjugate addition followed by elimination of alkanethiol. This strategy has been applied to the synthesis of bis(1-indolizinyl)methanes by the condensation of a 2,3-disubstituted indolizine with aldehydes/ketones in the presence of a catalytic amount of BF3 ·OEt2 .
Key words
indolizines - α-EWG ketene S ,S -acetals - bis(1-indolizinyl)methanes - annulation - condensation
References
1a
Flitsch W. In
Comprehensive Heterocyclic Chemistry
Vol. 4:
Katritzky AR.
Rees CW.
Pergamon;
Oxford:
1984.
p.443
1b
Flitsch W. In
Comprehensive Heterocyclic Chemistry
Vol. 4:
Katritzky AR.
Rees CW.
Pergamon;
Oxford:
1984.
p.476
1c
Flitsch W. In
Comprehensive Heterocyclic Chemistry II
Vol. 8:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon;
Oxford:
1996.
p.237
2a
Gubin J.
Lucchetti J.
Mahaux J.
Nisato D.
Rosseels G.
Clinet M.
Polster P.
Chatelain P.
J. Med. Chem.
1992,
35:
981
2b
Micheal JP.
Alkaloids
2001,
55:
91
2c
Micheal JP.
Nat. Prod. Rep.
2002,
19:
742
2d
Pourashraf M.
Delair P.
Rasmussen MO.
Greene AE.
J. Org. Chem.
2000,
65:
6966
2e
Park SH.
Kang HJ.
Ko S.
Park S.
Chang S.
Tetrahedron: Asymmetry
2001,
12:
2621
2f
Gundersen L.-L.
Charnock C.
Negussie AH.
Rise F.
Teklu S.
Eur. J. Pharm. Sci.
2007,
30:
26
3a
Harrell WB.
J. Pharm. Sci.
1970,
59:
275
3b
Molyneux RJ.
James LF.
Science
1982,
216:
190
3c
Dennis JW.
Cancer Res.
1986,
46:
5131
3d
Ahrens PB.
Ankel H.
J. Biol. Chem.
1987,
262:
7575
3e
Nash RJ.
Fellows LE.
Dring JV.
Stirton CH.
Carter D.
Hegarty MP.
Bell EA.
Phytochemistry
1988,
27:
1403
3f
Gubin J.
Vogelaer H.
Inion H.
Houben C.
Lucchetti J.
Mahaux J.
Rosseels G.
Peiren M.
Clinet M.
Polster P.
Chatelain P.
J. Med. Chem.
1993,
36:
1425
3g
Gupta SP.
Mathur AN.
Nagappa AN.
Kumar D.
Kumaran S.
Eur. J. Med. Chem.
2003,
38:
867
4
Weidner CH.
Wadsworth DH.
Bender SL.
Beltman DJ.
J. Org. Chem.
1989,
54:
3660
5 For a review, see: Uchida T.
Matsumoto K.
Synthesis
1976,
209
6a
Scholtz M.
Ber. Dtsch. Chem. Ges.
1912,
45:
734
6b
Tschitschibabin AE.
Ber. Dtsch. Chem. Ges.
1927,
60:
1607
6c
Boekelheide V.
Windgassen RJ.
J. Am. Chem. Soc.
1959,
81:
1456
6d
Hurst J.
Melton T.
Wibberley DG.
J. Chem. Soc.
1965,
2948
6e
Kostik EI.
Abiko A.
Oku A.
J. Org. Chem.
2001,
66:
2618
6f
Bora U.
Saikia A.
Boruah RC.
Org. Lett.
2003,
5:
435
7a
Miki Y.
Hachiken H.
Takemura S.
Ikeda M.
Heterocycles
1994,
22:
701
7b
Poissonnet G.
Theret-Bettiol M.-H.
Dodd RH.
J. Org. Chem.
1996,
61:
2273
7c
Katritzky AR.
Qiu G.
Yang B.
He H.-Y.
J. Org. Chem.
1999,
64:
7618
7d
Fang X.
Wu Y.-M.
Deng J.
Wang S.-W.
Tetrahedron
2004,
60:
5487
7e
Pearson WH.
Stoy P.
Mi Y.
J. Org. Chem.
2004,
69:
1919
7f
Liu Y.
Hu H.-Y.
Liu Q.-J.
Hu H.-W.
Xu J.-H.
Tetrahedron
2007,
63:
2024
8a
Sasaki T.
Kanematsu K.
Kakehi A.
Ito G.
Tetrahedron
1972,
28:
4947
8b
Pohjala E.
Tetrahedron Lett.
1972,
13:
2585
8c
Østbly OB.
Dalhus B.
Gundersen L.-L.
Rise F.
Bast A.
Haenen GRMM.
Eur. J. Org. Chem.
2000,
3763
8d
Kakehi A.
Ito S.
Hirata K.
Zuo P.
Chem. Pharm. Bull.
2000,
48:
865
8e
Kakehi A.
Suga H.
Kako T.
Fujii T.
Tanaka N.
Kobayashi T.
Chem. Pharm. Bull.
2003,
51:
1246
9
Kaloko J.
Hayford A.
Org. Lett.
2005,
7:
4305
10
Liu Y.
Song Z.
Yan B.
Org. Lett.
2007,
9:
409
11
Smith CR.
Bunnelle EM.
Rhodes AJ.
Sarpong R.
Org. Lett.
2007,
9:
1169
12a
Bode ML.
Kaye PT.
J. Chem. Soc., Perkin Trans. 1
1990,
2612
12b
Bode ML.
Kaye PT.
J. Chem. Soc., Perkin Trans. 1
1993,
1809
12c
Basavaiah D.
Rao AJ.
Chem. Commun.
2003,
604
12d
Basavaiah D.
Rao AJ.
Tetrahedron Lett.
2003,
44:
4365
13a
Dieter RK.
Tetrahedron
1986,
42:
3029
13b
Junjappa H.
Ila H.
Asokan CV.
Tetrahedron
1990,
46:
5423
13c
Kolb M.
Synthesis
1990,
171
13d
Ila H.
Junjappa H.
Barun O.
J. Organomet. Chem.
2001,
624:
34
For selected examples, see:
14a
Gill S.
Kocienski P.
Kohler A.
Pontiroli A.
Liu Q.
Chem. Commun.
1996,
1743
14b
Kocienski PJ.
Alessandro P.
Liu Q.
J. Chem. Soc., Perkin Trans. 1
2001,
2356
14c
Barun O.
Nandi S.
Panda K.
Ila H.
Junjappa H.
J. Org. Chem.
2002,
67:
5398
14d
Nandi S.
Syam Kumar UK.
Ila H.
Junjappa H.
J. Org. Chem.
2002,
67:
4916
For selected examples, see:
15a
Ila H.
Junjappa H.
Mohanta PK.
Prog. Heterocycl. Chem.
2001,
13:
1
15b
Venkatesh C.
Singh B.
Mahata PK.
Ila H.
Junjappa H.
Org. Lett.
2005,
7:
2169
15c
Peruncheralathan S.
Khan TA.
Ila H.
Junjappa H.
J. Org. Chem.
2005,
70:
10030
15d
Rao HSP.
Sivakumar S.
J. Org. Chem.
2006,
71:
8715
For selected examples, see:
16a
Liu Q.
Che G.
Yu H.
Liu Y.
Zhang J.
Zhang Q.
Dong D.
J. Org. Chem.
2003,
68:
9148
16b
Sun S.
Liu Y.
Liu Q.
Zhao Y.
Dong D.
Synlett
2004,
1731
16c
Zhao Y.-L.
Liu Q.
Zhang J.-P.
Liu Z.-Q.
J. Org. Chem.
2005,
70:
6913
16d
Ouyang Y.
Dong D.
Yu H.
Liang Y.
Liu Q.
Adv. Synth. Catal.
2006,
348:
206
16e
Bi X.
Dong D.
Liu Q.
Pan W.
Zhao L.
Li B.
J. Am. Chem. Soc.
2005,
127:
4578
16f
Dong D.
Bi X.
Liu Q.
Cong F.
Chem. Commun.
2005,
3580
16g
Bi X.
Dong D.
Li Y.
Liu Q.
J. Org. Chem.
2005,
70:
10886
16h
Yu H.
Dong D.
Ouyang Y.
Liu Q.
Wang Y.
Lett. Org. Chem.
2005,
2:
755
16i
Zhao L.
Liang F.
Bi X.
Sun S.
Liu Q.
J. Org. Chem.
2006,
71:
1094
16j
Li Y.
Liang FS.
Bi XH.
Liu Q.
J. Org. Chem.
2006,
71:
8006
16k
Liang FS.
Zhang JQ.
Tan J.
Liu Q.
Adv. Synth. Catal.
2006,
348:
1986
16l
Liu J.
Wang M.
Li B.
Liu Q.
Zhao Y.
J. Org. Chem.
2007,
72:
4401
17a
Zhang Q.
Sun S.
Hu J.
Liu Q.
Tan J.
J. Org. Chem.
2007,
72:
139
17b
Sun S.
Zhang Q.
Liu Q.
Kang J.
Yin Y.
Li D.
Dong D.
Tetrahedron Lett.
2005,
46:
6271
17c
Yin Y.
Zhang Q.
Li J.
Sun S.
Liu Q.
Tetrahedron Lett.
2006,
47:
6071
18a
Yin Y.
Wang M.
Liu Q.
Hu J.
Sun S.
Kang J.
Tetrahedron Lett.
2005,
46:
4399
18b
Zhang Q.
Liu Y.
Wang M.
Liu Q.
Hu J.
Yin Y.
Synthesis
2006,
3009
19
Pan W.
Dong D.
Sun S.
Liu Q.
Synlett
2006,
1090
For reviews on the Baylis-Hillman reactions, see:
20a
Drewes SE.
Roos GHP.
Tetrahedron
1988,
44:
4653
20b
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
20c
Langer P.
Angew. Chem, Int. Ed.
2000,
39:
3049
20d
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
21
Morra NA.
Morales CL.
Bajtos B.
Wang X.
Jang H.
Wang J.
Yu M.
Pagenkopf BL.
Adv. Synth. Catal.
2006,
348:
2385 ; and references cited therein
22
Hamel P.
Zajac N.
Atkinson JG.
Girard Y.
Tetrahedron Lett.
1993,
34:
2059
23a
Stoll M.
Winter M.
Gautschi F.
Flament I.
Willhalm B.
Helv. Chim. Acta
1967,
50:
628
23b
Frattini C.
Bicchi C.
Barettini C.
Nano GM.
J. Agric. Food Chem.
1977,
25:
1238
23c
Shimoda M.
Shibamoto T.
J. Agric. Food Chem.
1990,
38:
802
24a
Mason CD.
Nord FF.
J. Org. Chem.
1951,
16:
722
24b
Mason CD.
Nord FF.
J. Org. Chem.
1952,
17:
778
24c
Ghaisas VV.
Kane BJ.
Nord FF.
J. Org. Chem.
1958,
23:
560
25a
Matsumoto K.
Nakaminami H.
Sogabe M.
Kurata H.
Oda M.
Tetrahedron Lett.
2002,
43:
3049
25b
Nair V.
Thomas S.
Mathew SC.
Org. Lett.
2004,
6:
3513
25c
Nair V.
Thomas S.
Mathew SC.
Vidya N.
Rath NP.
Tetrahedron
2005,
61:
9533
26a
Yadav JS.
Reddy BVS.
Murthy ChVSR.
Kumar GM.
Madan C.
Synthesis
2001,
783
26b
Yadav JS.
Reddy BVS.
Sunitha S.
Adv. Synth. Catal.
2003,
345:
349
26c
Esquivias J.
Arrayás RG.
Carretero JC.
Angew. Chem. Int. Ed.
2006,
45:
629
27
Tominaga Y.
Itonaga S.
Kouno T.
Shigemitsu Y.
Heterocycles
2001,
55:
1447
28 Crystal data for 7d : C29 H23 ClN4 S2 , yellowish, M = 527.08, monoclinic, space group P2 (1)/n , a = 15.109 (3) Å, b = 11.0197 (18) Å, c = 16.741 (3) Å, V = 2630.8 (7) Å3 , α = 90.00, β = 109.287 (2), γ = 90.00, Z = 4, T = 293 K, F
000
= 1096, R 1 = 0.0610, wR 2 = 0.1646. The supplementary crystallographic data for this structure (CCDC 657119) can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/products/csd/request.
29
Thamyongkit P.
Bhise AD.
Taniguchi M.
Lindsey JS.
J. Org. Chem.
2006,
71:
903
30a
Liebeskind LS.
Srogl J.
Org. Lett.
2002,
4:
979
30b
Kusturin C.
Liebeskind LS.
Rahman H.
Sample K.
Schweitzer B.
Srogl J.
Neumann WL.
Org. Lett.
2003,
5:
4349