Geburtshilfe Frauenheilkd 2008; 68(4): 397-403
DOI: 10.1055/s-2008-1038453
Translationale Forschung

© Georg Thieme Verlag KG Stuttgart · New York

Anti-Angiogenese: Von der präklinischen Forschung zur klinischen Anwendung

Anti-angiogenesis: Moving from Preclinical Research to Clinical ApplicationT. Hawighorst1 , F. Hussein1 , W. Stein1 , C. Gründker1 , G. Emons1
  • 1Klinik für Gynäkologie und Geburtshilfe, Universitätsmedizin Göttingen, Göttingen
Further Information

Publication History

Publication Date:
14 April 2008 (online)

Zusammenfassung

Angiogenese, die Entwicklung neuer Blutgefäße, ist essenziell für das Wachstum und die Metastasierung von Tumoren. Es existieren ausreichend klinische Hinweise, die die zentrale Bedeutung der Angiogenese für die Tumorprogression beweisen. Die Hemmung der Angiogenese könnte somit die Behandlung von Patientinnen mit gynäkologischen Malignomen effektiver gestalten. Eine Vielzahl von möglichen therapeutischen „Targets“ antiangiogener Substanzen wurde bereits identifiziert. Es konnte gezeigt werden, dass die häufige Gabe bestimmter Chemotherapeutika in niedriger Dosierung, auch bekannt als „metronomische Chemotherapie“, antiangiogen wirkt. Der humanisierte monoklonale anti-VEGF-Antikörper Bevacizumab ist der gegenwärtig klinisch am weitesten ausgereifte Angiogenesehemmer. In einer klinischen Phase-III-Studie führte die Zugabe von Bevacizumab zu Paclitaxel in der First-Line-Behandlung von Patientinnen mit fortgeschrittenem Mammakarzinom zu einer signifikanten Verlängerung des progressionsfreien Überlebens. Diese Studie belegt somit die Effektivität einer antiangiogenen Therapie bei Brustkrebs. Weitere Studien mit Bevacizumab, zum Beispiel beim Ovarialkarzinom, laufen derzeit. Eine Vielzahl anderer Angiogeneseinhibitoren wird gegenwärtig klinisch untersucht, und neue angiogenesehemmende Substanzen werden entwickelt. Dieser Artikel gibt eine Übersicht über die Rolle der Gefäßneubildung bei der Pathogenese maligner Tumorerkrankungen sowie über aktuelle Behandlungsstrategien zur Hemmung der Tumorangiogenese.

Abstract

Angiogenesis, the process of new blood vessel formation, is required for tumor growth and metastasis. There is also substantial clinical evidence supporting the central role of angiogenesis in tumor progression. Thus, the inhibition of angiogenesis may provide more efficacious treatment for patients with advanced gynecological malignancies. A number of possible therapeutic targets for anti-angiogenic agents have been identified. The results of recent experimental studies have suggested that the frequent administration of certain chemotherapeutic agents at low doses, known as “metronomic chemotherapy”, may result in anti-angiogenic effects. The central importance of tumor neovascularization has been emphasized by clinical trials using anti-angiogenic therapy. The humanized monoclonal antibody against VEGF, bevacizumab, is the clinically most mature of the anti-angiogenic agents. Recently, a large phase III clinical trial demonstrated a significant benefit in progression-free survival with the addition of anti-VEGF monoclonal antibody bevacizumab to paclitaxel for the first-line treatment of advanced breast cancer. This study established that anti-angiogenic therapy is effective in breast cancer. Additional studies on bevacizumab, i.e. on its application in ovarian cancer, are underway. A variety of other anti-angiogenic agents are currently under clinical investigation and novel angiogenesis inhibitors are being developed. This article reviews the role of angiogenesis in the pathogenesis of cancer and the current treatment strategies for inhibiting tumor angiogenesis.

Literatur

  • 1 Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases.  Nature. 2000;  407 249-257
  • 2 Yancopoulos G D, Davis S, Gale N W, Rudge J S, Wiegand S J, Holash J. Vascular-specific growth factors and blood vessel formation.  Nature. 2000;  407 242-248
  • 3 Cao Y. Endogenous angiogenesis inhibitors and their therapeutic implications.  Int J Biochem Cell Biol. 2001;  33 357-369
  • 4 Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors.  Nature Rev Cancer. 2002;  2 727-739
  • 5 Folkman J. Tumor angiogenesis: therapeutic implications.  N Engl J Med. 1971;  285 1182-1186
  • 6 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease.  Nature Med. 1995;  1 27-31
  • 7 Folkman J. Angiogenesis and tumor growth.  N Engl J Med. 1996;  334 921
  • 8 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.  Cell. 1996;  86 353-364
  • 9 Dvorak H F, Brown L F, Detmar M, Dvorak A M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis.  Am J Pathol. 1995;  146 1029-1039
  • 10 Ferrara N. The role of vascular endothelial growth factor in pathological angiogenesis.  Breast Cancer Res Treat. 1995;  36 127-137
  • 11 Davis S, Aldrich T H, Jones P F, Acheson A, Compton D L, Jain V, Ryan T E, Bruno J, Radziejewski C, Maisonpierre P C, Yancopoulos G D. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning.  Cell. 1996;  87 1161-1169
  • 12 Maisonpierre P C, Suri C, Jones P F, Bartunkova S, Wiegand S J, Radziejewski C, Compton D, McClain J, Aldrich T H, Papadopoulos N, Daly T J, Davis S, Sato T N, Yancopoulos G D. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.  Science. 1997;  277 55-60
  • 13 Dumont D J, Gradwohl G J, Fong G H, Auerbach R, Breitman M L. The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors.  Oncogene. 1993;  8 1293-1301
  • 14 Davis S, Yancopoulos G D. The angiopoietins: Yin and Yang in angiogenesis.  Curr Top Microbiol Immunol. 1999;  237 173-185
  • 15 Holash J, Maisonpierre P C, Compton D, Boland P, Alexander C R, Zagzag D, Yancopoulos G D, Wiegand S J. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF.  Science. 1999;  284 1994-1998
  • 16 Holash J, Wiegand S J, Yancopoulos G D. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF.  Oncogene. 1999;  18 5356-5362
  • 17 Ahmad S A, Liu W, Jung Y D, Fan F, Wilson M, Reinmuth N, Shaheen R M, Bucana C D, Ellis L M. The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer.  Cancer Res. 2001;  61 1255-1259
  • 18 Hawighorst T, Skobe M, Streit M, Hong Y K, Velasco P, Brown L F, Riccardi L, Lange-Asschenfeldt B, Detmar M. Activation of the tie2 receptor by angiopoietin-1 enhances tumor vessel maturation and impairs squamous cell carcinoma growth.  Am J Pathol. 2002;  160 1381-1392
  • 19 Hayes A J, Huang W Q, Yu J, Maisonpierre P C, Liu A, Kern F G, Lippman M E, McLeskey S W, Li L Y. Expression and function of angiopoietin-1 in breast cancer.  Br J Cancer. 2000;  83 1154-1160
  • 20 Holmgren L, O'Reilly M S, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression.  Nature Med. 1995;  1 149-153
  • 21 Hawighorst T, Velasco P, Streit M, Hong Y K, Kyriakides T, Brown L F, Bornstein P, Detmar M. Thrombospondin-2 plays a protective role in multistep carcinogenesis: a novel host anti-tumor defense mechanism.  EMBO J. 2001;  20 2631-2640
  • 22 Streit M, Riccardi L, Velasco P, Brown L F, Hawighorst T, Bornstein P, Detmar M. Thrombospondin-2: A potent endogenous inhibitor of tumor growth and angiogenesis.  Proc Natl Acad Sci USA. 1999;  96 14888-14893
  • 23 Hussein F, Woeste A, Hahmann C, Scheve F, Emons G, Koch M, Hawighorst T. Inhibition of breast carcinoma growth and metastasis by systemic delivery of an N-terminal 80 kDa recombinant fragment of the angiogenesis inhibitor thrombospondin-2. Trafo-Symposium 2007 der AGO (ISBN 978-3-938669-03-7). Weimar; Aviso Verlagsgesellschaft mbH 2007: 37
  • 24 Kim K J, Li B, Winer J, Armanini M, Gillett N, Phillips H S, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo.  Nature. 1993;  362 841-844
  • 25 Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.  N Engl J Med. 2004;  350 2335-2342
  • 26 Sandler A, Gray R, Perry M C, Brahmer J, Schiller J H, Dowlati A, Lilenbaum R, Johnson D H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer.  N Engl J Med. 2006;  355 2542-2550 N Engl J Med. 2007;  356 318
  • 27 Miller K D, Chap L I, Holmes F A, Cobleigh M A, Marcom P K, Fehrenbacher L, Dickler M, Overmoyer B A, Reimann J D, Sing A P, Langmuir V, Rugo H S. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer.  J Clin Oncol. 2005;  23 792-799
  • 28 Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez E A, Shenkier T, Cella D, Davidson N E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer.  N Engl J Med. 2007;  357 2666-2676
  • 29 Burger R A, Sill M W, Monk B J, Greer B E, Sorosky J I. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study.  J Clin Oncol. 2007;  25 5165-5171
  • 30 Cannistra S A, Matulonis U A, Penson R T, Hambleton J, Dupont J, Mackey H, Douglas J, Burger R A, Armstrong D, Wenham R, McGuire W. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer.  J Clin Oncol. 2007;  25 5180-5186
  • 31 Tew W P, Colombo N, Ray-Coquard I. et al . VEGF-Trap für patients (pts) with recurrent platinum resistant epithelial ovarian cancer (EOC): Preliminary results of a randomized, multicenter phase II study.  J Clin Oncol. 2007;  25 5508 [abstract]
  • 32 Fotsis T, Zhang Y, Pepper M S, Adlercreutz H, Montesano R, Nwaroth P P, Schweigerer L. The endogenous oestrogen metabolite 2-methoxyestradiol inhibits angiogenesis and suppresses tumor growth.  Nature. 1994;  368 237-239
  • 33 Klauber N, Parangi S, Flynn E, Hamel E, D'Amato R J. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol.  Cancer Res. 1997;  57 81-86
  • 34 Sledge Jr. G W, Miller K D, Haney L G, Nguyen D D, Storniolo A M, Phillips E, Pribluda V, Gubisch E R. A phase I study of 2-methoxyestradiol in patients with refractory metastatic breast cancer.  Proc Am Soc Clin Oncol. 2002;  21 111 [abstract]
  • 35 James J, Murry D J, Treston A M, Storniolo A M, Sledge G W, Sidor C, Miller K D. Phase I safety, pharmacokinetic and pharmacodynamic studies of 2-methoxyestradiol alone or in combination with docetaxel in patients with locally recurrent or metastatic breast cancer.  Invest New Drugs. 2007;  25 41-48
  • 36 Yoshiji H, Kuriyama S, Ways D K. et al . Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis.  Cancer Res. 1999;  59 4413-4418
  • 37 Carducci M A, Musib L, Kies M S. et al . Phase I study dose escalation and pharmacokinetic study of enzastaurin, an oral protein kinase C beta inhibitor, in patients with advanced cancer.  J Clin Oncol. 2006;  24 4092-4099
  • 38 Bruns C J, Solorzano C C, Harbison M T. et al . Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma.  Cancer Res. 2000;  60 2926-2935
  • 39 Petit A M, Rak J, Hung M C. et al . Neutralizing antibodies against epidermal growth factor rand ErbB‐2/neu receptor tyrosine kinases downregulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: Angiogenic implications for signal transduction therapy of solid tumors.  Am J Pathol. 1997;  151 1523-1530
  • 40 Viloria-Petit A, Crombet T, Jothy S. et al . Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: A role for altered tumor angiogenesis.  Cancer Res. 2001;  61 5090-5101
  • 41 Gasparini G. Metronomic scheduling: The future of chemotherapy?.  Lancet Oncol. 2001;  2 733-740
  • 42 Browder T, Butterfield C E, Kraling B M. et al . Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug resistant cancer.  Cancer Res. 2000;  60 1878-1886
  • 43 Miller K D, Sweeney C, Sledge G. Redefining the target: chemotherapeutics as antiangiogenics.  J Clin Oncol. 2001;  19 1195-1206
  • 44 Klement G, Huang P, Mayer B, Green S K, Man S, Bohlen P, Hicklin D, Kerbel R S. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR‐2 antibody in multidrug-resistant human breast cancer xenografts.  Clin Cancer Res. 2002;  8 221-232
  • 45 Browder T, Butterfield C E, Kraling B M, Shi B, Marshall B, O'Reilly M S, Folkman J. Antiangiogenic scheduling of chemotherapy improves efficacy against drug-resistant cancer.  Cancer Res. 2000;  60 1878-1886
  • 46 Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin D J, Bohlen P, Kerbel R S. Continous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity.  J Clin Invest. 2000;  105 R15-R24
  • 47 Bocci G, Francia G, Man S, Lawler J, Kerbel R S. Thrombospondin-1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy.  Proc Natl Acad Sci USA. 2003;  100 12917-12922
  • 48 Seidman A D, Hudis C A, Albanel J, Tong W, Tepler I, Curie V, Moynahan M E, Theodoulou M, Gollub M, Baselga J, Norton L. Dose-dense therapy with weekly 1-hour paclitaxel infusions in the treatment of metastatic breast cancer.  J Clin Oncol. 1998;  16 3353-3361
  • 49 Saltz L B, Rosen L S, Marshall J L, Belt R J, Hurwitz H I, Eckhardt S G, Bergsland E K, Haller D G, Lockhart A C, Rocha Lima C M, Huang X, DePrimo S E, Chow-Maneval E, Chao R C, Lenz H J. Phase II trial of sunitinib in patients with metastatic colorectal cancer after failure of standard therapy.  J Clin Oncol. 2007;  25 4793-4799
  • 50 Miller K D, Burstein H J, Elias A D. et al . Phase II study of SU11248, a multitargeted receptor tyrosine kinase inhibitor (TKI), in patients (pts) with previously treated metastatic breast cancer (MBC).  Proc Am Soc Clin Oncol. 2005;  23 (abstr 563)
  • 51 Chiang G G, Abraham R T. Targeting the mTOR signaling network in cancer.  Trends Mol Med. 2007;  13 433-442

Priv.-Doz. Dr. med. Thomas Hawighorst

Klinik für Gynäkologie und Geburtshilfe
Universitätsmedizin Göttingen

Robert-Koch-Straße 40

37075 Göttingen

Email: thomas.hawighorst@med.uni-goettingen.de