Thorac Cardiovasc Surg 2009; 57(5): 309-311
DOI: 10.1055/s-2008-1038634
Case Reports

© Georg Thieme Verlag KG Stuttgart · New York

The Potential Protective Effect of Low Potassium Dextran against Lipid Peroxidation in a Rat Lung Transplantation Model

R. L. Torres1 , L. K. Martins2 , M. Picoral3 , J. Auzani4 , T. R. G. Fernandes3 , I. L. S. Torres4 , M. B. C. Ferreira4 , C. F. Andrade5 , A. Belló-Klein3 , P. F. G. Cardoso5
  • 1Respirology, Porto Alegre General Hospital, Porto Alegre, Brazil
  • 2Cardiovascular Surgery, Heart Institute, Porto Alegre, Brazil
  • 3Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
  • 4Pharmacology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
  • 5Thoracic Surgery, Hospital de Clinicas Porto Alegre, Porto Alegre, Brazil
Further Information

Publication History

received January 20, 2008

Publication Date:
23 July 2009 (online)

Abstract

The overproduction of reactive oxygen species plays an important role in the cascade of events during lung ischemia-reperfusion leading to graft failure. An evaluation of the peripheral markers of oxidative stress and antioxidant enzyme activities was carried out after reperfusion in a rat lung transplant model. The decrease in lipid peroxidation immediately after transplantation (p < 0.05) may suggest an adaptative response and/or a protective effect of low potassium dextran against lipid peroxidation through natural scavenging mechanisms.

References

  • 1 de Perrot M, Liu M, Waddell T K, Keshavjee S. Ischemia-reperfusion-induced lung injury.  Am J Respir Crit Care Med. 2003;  167 490-511
  • 2 Heffner J E, Repine J E. Pulmonary strategies of antioxidant defense.  Am Rev Respir Dis. 1989;  140 531-554
  • 3 Liu J, Mori A. Stress, aging, and brain oxidative damage.  Neurochem Res. 1999;  24 1479-1497
  • 4 Liu J, Wang X, Shigenaga M K, Yeo H C, Mori A, Ames B N. Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats.  Faseb J. 1996;  10 1532-1538
  • 5 Al-Mehdi A B, Shuman H, Fisher A B. Intracellular generation of reactive oxygen species during nonhypoxic lung ischemia.  Am J Physiol. 1997;  272 L294-L300
  • 6 Sánchez P G, Martins L K, Martins F K, Schimer R, Cardoso P FG, Andrade C F. Technical modification of the model of unilateral rat lung allotransplantation.  J Bras Pneumol. 2007;  33 448-453
  • 7 Repetto M, Griemberg G, llesuy S. Empleo de técnicas de quimioluminiscencia para la evaluación de marcadores periféricos de estrés oxidativo en sangre de pacientes infectados por HIV.  ByPC. 1999;  63 24-28
  • 8 Esme H, Fidan H, Koken T, Solak O. Effect of lung ischemia-reperfusion on oxidative stress parameters of remote tissues.  Eur J Cardiothorac Surg. 2006;  29 294-298
  • 9 Melley D D, Evans T W, Quinlan G J. Redox regulation of neutrophil apoptosis and the systemic inflammatory response syndrome.  Clin Sci (Lond). 2005;  108 413-424
  • 10 Struber M, Wilhelmi M, Harringer W et al. Flush perfusion with low potassium dextran solution improves early graft function in clinical lung transplantation.  Eur J Cardiothorac Surg. 2001;  19 190-194
  • 11 Kelly R F, Murar J, Hong Z et al. Low potassium dextran lung preservation solution reduces reactive oxygen species production.  Ann Thorac Surg. 2003;  75 1705-1710
  • 12 Keshavjee S H, Yamazaki F, Yokomise H et al. The role of dextran 40 and potassium in extended hypothermic lung preservation for transplantation.  J Thorac Cardiovasc Surg. 1992;  103 314-325
  • 13 Kennedy T P, Rao N V, Hopkins C, Pennington L, Tolley E, Hoidal J R. Role of reactive oxygen species in reperfusion injury of the rabbit lung.  J Clin Invest. 1989;  83 1326-1335
  • 14 Henderson L M, Chappell J B, Jones O T. Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge.  Biochem J. 1988;  255 285-290
  • 15 Yamazaki F, Yokomise H, Keshavjee S H et al. The superiority of an extracellular fluid solution over Euro-Collins' solution for pulmonary preservation.  Transplantation. 1990;  49 690-694
  • 16 Sasaki S, McCully J D, Alessandrini F, LoCicero 3rd J. Impact of initial flush potassium concentration on the adequacy of lung preservation.  J Thorac Cardiovasc Surg. 1995;  109 1090-1095
  • 17 Kimblad P O, Sjoberg T, Massa G, Solem J O, Steen S. High potassium contents in organ preservation solutions cause strong pulmonary vasocontraction.  Ann Thorac Surg. 1991;  52 523-528
  • 18 Bando T, Albes J M, Fehrenbach H, Nusse T, Schafers H J, Wahlers T. Influence of the potassium concentration on functional and structural preservation of the lung: where is the optimum?.  J Heart Lung Transplant. 1998;  17 715-724
  • 19 Sakamaki F, Hoffmann H, Muller C, Dienemann H, Messmer K, Schildberg F W. Reduced lipid peroxidation and ischemia-reperfusion injury after lung transplantation using low potassium dextran solution for lung preservation.  Am J Respir Crit Care Med. 1997;  156 1073-1081
  • 20 Maccherini M, Keshavjee S H, Slutsky A S, Patterson G A, Edelson J D. The effect of low potassium-dextran versus Euro-Collins solution for preservation of isolated type II pneumocytes.  Transplantation. 1991;  52 621-626
  • 21 Carbognani P, Rusca M, Solli P et al. Pneumocytes type II ultrastructural modifications after storage in preservation solutions for transplantation.  Eur Surg Res. 1997;  29 319-326
  • 22 Suzuki S, Inoue K, Sugita M, Tsubochi H, Kondo T, Fujimura S. Effects of EP4 solution and LPD solution vs. Euro-Collins solution on Na(+)/K(+)- ATPase activity in rat alveolar type II cells and human alveolar epithelial cell line A549 cells.  J Heart Lung Transplant. 2000;  19 887-893

Dr. MD, PhD Cristiano Feijó Andrade

Thoracic Surgery
Hospital de Clinicas Porto Alegre

Ramiro Barcelos 2350

900035-903 Porto Alegre – RS

Brazil

Phone: + 55 51 21 01 86 84

Fax: + 55 51 21 01 86 84

Email: cristianofa@cirurgiatoracica.net