Literatur
-
1
Kjer B, Eiberg H, Kjer P, Rosenberg T.
Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects.
Acta Ophthalmol Scand.
1996;
74
3-7
-
2
Cohn A C, Toomes C, Potter C, Towns K V, Hewitt A W, Inglehearn C F, Craig J E, Mackey D A.
Autosomal dominant optic atrophy: penetrance and expressivity in patients with OPA1 mutations.
Am J Ophthalmol.
2007;
143
656-662
-
3
Votruba M, Aijaz S, Moore A T.
A review of primary hereditary optic neuropathies.
J Inherit Metab Dis.
2003;
26
209-227
-
4
Alexander C, Votruba M, Pesch U E, Thiselton D L, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya S S, Wissinger B.
OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28.
Nat Genet.
2000;
26
211-215
-
5
Delettre C, Lenaers G, Griffoin J M, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel C P.
Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy.
Nat Genet.
2000;
26
207-210
-
6
Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko G V, Rudka T, Bartoli D, Polishuck R S, Danial N N, De Strooper B, Scorrano L.
OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion.
Cell.
2006;
126
177-189
-
7
Bette S, Zimmermann U, Wissinger B, Knipper M.
OPA1, the disease gene for optic atrophy type Kjer, is expressed in the inner ear.
Histochem Cell Biol.
2007;
128
421-430
-
8
Payne M, Yang Z, Katz B J, Warner J E, Weight C J, Zhao Y, Pearson E D, Treft R L, Hillman T, Kennedy R J, Meire F M, Zhang K.
Dominant optic atrophy, sensorineural hearing loss, ptosis, and ophthalmoplegia: a syndrome caused by a missense mutation in OPA1.
Am J Ophthalmol.
2004;
138
749-755
-
9
Verny C, Loiseau D, Scherer C, Lejeune P, Chevrollier A, Gueguen N, Guillet V, Dubas F, Reynier P, Amati-Bonneau P, Bonneau D.
Multiple sclerosis-like disorder in opa1-related autosomal dominant optic atrophy.
Neurology.
2008;
70
1152-1153
-
10
Reynier P, Amati-Bonneau P, Verny C, Olichon A, Simard G, Guichet A, Bonnemains C, Malecaze F, Malinge M C, Pelletier J B, Calvas P, Dollfus H, Belenguer P, Malthièry Y, Lenaers G, Bonneau D.
OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract.
J Med Genet.
2004;
41
e110
-
11
Kerrison J B, Arnould V J, Ferraz Sallum J M, Vagefi M R, Barmada M M, Li Y, Zhu D, Maumenee I CH.
Genetic heterogeneity of dominant optic atrophy, Kjer type: Identification of a second locus on chromosome 18q12.2-12.3.
Arch Ophthalmol.
1999;
117
805-810
-
12
Barbet F, Hakiki S, Orssaud C, Gerber S, Perrault I, Hanein S, Ducroq D, Dufier J L, Munnich A, Kaplan J, Rozet J M.
A third locus for dominant optic atrophy on chromosome 22q.
J Med Genet.
2005;
42
e1
-
13
Barbet F, Gerber S, Hakiki S, Perrault I, Hanein S, Ducroq D, Tanguy G, Dufier J L, Munnich A, Rozet J M, Kaplan J.
A first locus for isolated autosomal recessive optic atrophy (ROA1) maps to chromosome 8q.
Eur J Hum Genet.
2003;
11
966-971
-
14
Anikster Y, Kleta R, Shaag A, Gahl W A, Elpeleg O.
Type III 3-methylglutaconic aciduria (optic atrophy plus syndrome, or Costeff optic atrophy syndrome): identification of the OPA3 gene and its founder mutation in Iraqi Jews.
Am J Hum Genet.
2001;
69
1218-1224
-
15
Assink J J, Tijmes N T, ten Brink J B, Oostra R J, Riemslag F C, de Jong P T, Bergen A A.
A gene for X-linked optic atrophy is closely linked to the Xp11.4-Xp11.2 region of the X chromosome.
Am J Hum Genet.
1997;
61
934-939
-
16
Katz B J, Zhao Y, Warner J E, Tong Z, Yang Z, Zhang K.
A family with X-linked optic atrophy linked to the OPA2 locus Xp11.4-Xp11.2.
Am J Med Genet A.
2006;
140
2207-2211
-
17
Went L N, De Vries-De Mol E C, Volker-Dieben H J.
A family with apparently sex-linked optic atrophy.
J Med Genet.
1975;
12
94-98
-
18
Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish S J, Faucheux B, Trouillas P, Authier F J, Dürr A, Mandel J L, Vescovi A, Pandolfo M, Koenig M.
Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes.
Hum Mol Genet.
1997;
6
1771-1780
-
19
Christodoulou K, Deymeer F, Serdaroğlu P, Ozdemir C, Poda M, Georgiou D M, Ioannou P, Tsingis M, Zamba E, Middleton L T.
Mapping of the second Friedreich's ataxia (FRDA2) locus to chromosome 9p23-p11: evidence for further locus heterogeneity.
Neurogenetics.
2001;
3
127-132
-
20
Strom T M, Hörtnagel K, Hofmann S, Gekeler F, Scharfe C, Rabl W, Gerbitz K D, Meitinger T.
Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein.
Hum Mol Genet.
2001;
7
2021-2028
-
21
Amr S, Heisey C, Zhang M, Xia X J, Shows K H, Ajlouni K, Pandya A, Satin L S, El-Shanti H, Shiang R.
A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2.
Am J Hum Genet.
2007;
81
673-683
-
22 Alle Belege/Zitate/Literaturstellen zu LHON auf Anfrage. E-Mail: beate.leo-kottler@med.uni-tuebingen.de
-
23
Kellner U, Tillack H, Renner A B.
[Hereditary retinochoroidal dystrophies. Part 1: Pathogenesis, diagnosis, therapy and patient counselling].
Ophthalmologe.
2004;
101
307-319
-
24
Jang Y P, Matsuda H, Itagaki Y, Nakanishi K, Sparrow J R.
Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin.
J Biol Chem.
2005;
280
39732-39729
-
25
Radu R A, Han Y, Bui T V, Nusinowitz S, Bok D, Lichter J, Widder K, Travis G H, Mata N L.
Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases.
Invest Ophthalmol Vis Sci.
2005;
46
4393-4401
-
26
Demirci F Y, Rigatti B W, Mah T S, Gorin M B.
A novel RPGR exon ORF15 mutation in a family with X-linked retinitis pigmentosa and Coats'-like exudative vasculopathy.
Am J Ophthalmol.
2006;
141
208-210
-
27
Charbel Issa P, Scholl H P, Helb H M, Fleckenstein M, Inhetvin-Hutter C, Holz F G.
[Unilateral Pigmented Paravenous Retinochoroidal Atrophy.]
Klin Monatsbl Augenheilkd.
2007;
224
791-793
-
28
Moore A T, Fitzke F W, Kemp C M, Arden G B, Keen T J, Inglehearn C F, Bhattacharya S S, Bird A C.
Abnormal dark adaptation kinetics in autosomal dominant sector retinitis pigmentosa due to rod opsin mutation.
Br J Ophthalmol.
1992;
76
465-469
-
29
Tolmachova T, Anders R, Abrink M, Bugeon L, Dallman M J, Futter C E, Ramalho J S, Tonagel F, Tanimoto N, Seeliger M W, Huxley C, Seabra M C.
Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia.
J Clin Invest.
2006;
116
386-394
-
30
Ohkubo Y, Ueta A, Ito T, Sumi S, Yamada M, Ozawa K, Togari H.
Vitamin B6-responsive ornithine aminotransferase deficiency with a novel mutation G237D.
Tohoku J Exp Med.
2005;
205
335-342
-
31
Kaiser-Kupfer M I, Caruso R C, Valle D, Reed G F.
Use of an arginine-restricted diet to slow progression of visual loss in patients with gyrate atrophy.
Arch Ophthalmol.
2004;
122
982-984
-
32
Rüther K, Gal A, Kohlschütter A.
[The role of the ophthalmologist in the management of juvenile neuronal ceroid lipofuscinosis].
Klin Monatsbl Augenheilkd.
2006;
223
542-544
-
33
Apushkin M A, Fishman G A, Rajagopalan A S.
Fundus findings and longitudinal study of visual acuity loss in patients with X-linked retinoschisis.
Retina.
2005;
25
612-618
-
34
Acland G M, Aguirre G D, Ray J, Zhang Q, Aleman T S, Cideciyan A V, Pearce-Kelling S E, Anand V, Zeng Y, Maguire A M, Jacobson S G, Hauswirth W W, Bennett J.
Gene therapy restores vision in a canine model of childhood blindness.
Nat Genet.
2001;
28
92-95
-
35
Rüther K.
[Adult Refsum disease. A retinal dystrophy with therapeutic options].
Ophthalmologe.
2005;
102
772-777
-
36
Marigo V.
Programmed cell death in retinal degeneration: targeting apoptosis in photoreceptors as potential therapy for retinal degeneration.
Cell Cycle.
2007;
6
652-655
-
37
Leveillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz A C, Clerin E, Simonutti M, Forster V, Cavusoglu N, Chalmel F, Dolle P, Poch O, Lambrou G, Sahel J A.
Identification and characterization of rod-derived cone viability factor.
Nat Genet.
2004;
36
755-759
-
38
Chalmel F, Leveillard T, Jaillard C, Lardenois A, Berdugo N, Morel E, Koehl P, Lambrou G, Holmgren A, Sahel J A, Poch O.
Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential.
BMC Mol Biol.
2007;
8
74
-
39
Bainbridge J W, Smith A J, Barker S S, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder G E, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya S S, Thrasher A J, Fitzke F W, Carter B J, Rubin G S, Moore A T, Ali R R.
Effect of gene therapy on visual function in Leber's congenital amaurosis.
N Engl J Med.
2008;
358
2231-2239
-
40
Maguire A M, Simonelli F, Pierce E A, Pugh Jr E N, Mingozzi F, Bennicelli J, Banfi S, Marshall K A, Testa F, Surace E M, Rossi S, Lyubarsky A, Arruda V R, Konkle B, Stone E, Sun J, Jacobs J, Dell'Osso L, Hertle R, Ma J X, Redmond T M, Zhu X, Hauck B, Zelenaia O, Shindler K S, Maguire M G, Wright J F, Volpe N J, McDonnell J W, Auricchio A, High K A, Bennett J.
Safety and efficacy of gene transfer for Leber's congenital amaurosis.
N Engl J Med.
2008;
358
2240-2248
-
41
Berson E L.
Long-term visual prognoses in patients with retinitis pigmentosa: the Ludwig von Sallmann lecture.
Exp Eye Res.
2007;
85
7-14
Prof. Dr. med. Klaus Rüther
Charité-Augenklinik
Campus Virchow-Klinikum
Augustenburger Platz 1
13353 Berlin
eMail: klaus.ruether@charite.de
Dr. med. Beate Leo-Kottler
Department für Augenheilkunde
Neuroophthalmologie
Schleichstraße 12 – 16
72076 Tübingen
eMail: beate.leo-kottler@med.uni-tuebingen.de