Thorac Cardiovasc Surg 2009; 57(1): 25-29
DOI: 10.1055/s-2008-1039044
Original Cardiovascular

© Georg Thieme Verlag KG Stuttgart · New York

Secretion of Soluble ST2 – Possible Explanation for Systemic Immunosuppression after Heart Surgery

T. Szerafin1 [*] , T. Niederpold2 [*] , A. Mangold2 [*] , K. Hoetzenecker2 , S. Hacker2 , G. Roth3 , M. Lichtenauer2 , M. Dworschak3 , E. Wolner2 , H. J. Ankersmit2
  • 1Department of Cardiac Surgery, University of Debrecen, Debrecen, Hungary
  • 2Department of Cardiothoracic Surgery, General Hospital Vienna, Medical University of Vienna, Vienna, Austria
  • 3Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, General Hospital Vienna, Medical University of Vienna, Vienna, Austria
Further Information

Publication History

received April 25, 2008

Publication Date:
23 January 2009 (online)

Abstract

Background: Cardiopulmonary bypass is known to affect cytokine release leading to a generalized endogenous immune reaction similar to that described in sepsis, without having been explored in great detail. Therefore we evaluated the anti- and pro-inflammatory cytokine responses after heart surgery. Methods: 16 patients who underwent coronary artery bypass graft (CABG) surgery with extracorporeal circulation were included. ST2, IL-4 and IL-10 served as markers for TH2 cytokine response; IL-6, IL-8 and IFN-gamma as TH1 markers. Furthermore, total immunoglobulin subtype analysis (IgM, IgG, IgE) was performed. Results: Serum levels of soluble ST2 started to climb at 60 minutes (from 38 ± 14 preoperatively to 1 480 ± 890 pg/ml) and peaked 24 hours after surgery (13 360 ± 2 840 pg/ml, p < 0.001). IL-10 reached a maximum at 60 minutes and returned to baseline levels 24 hours later. IL-6 and IL-8 levels peaked 60 minutes after surgery. IL-4 and IFN-gamma did not change. Only IgM showed a significant peak on day eight (p < 0.001). Conclusion: Our results demonstrate that CABG surgery induces a massive long-lasting secretion of ST2, a protein related to immune suppression.

References

  • 1 Westaby S. Organ dysfunction after cardiopulmonary bypass. A systemic inflammatory reaction initiated by the extracorporeal circuit.  Intensive Care Med. 1987;  13 89-95
  • 2 McBride W T, Armstrong M A, Crockard A D, McMurray T J, Rea J M. Cytokine balance and immunosuppressive changes at cardiac surgery: contrasting response between patients and isolated CPB circuits.  Br J Anaest. 1995;  75 724-733
  • 3 Struber M, Cremer J T, Gohrbandt B. et al . Human cytokine responses to coronary artery bypass grafting with and without cardiopulmonary bypass.  Ann Thorac Surg. 1999;  68 1330-1335
  • 4 Szerafin T, Brunner M, Horvath A. et al . Soluble ST2 protein in cardiac surgery: a possible negative feedback loop to prevent uncontrolled inflammatory reactions.  Clin Lab. 2005;  51 657-663
  • 5 Szerafin T, Hoetzenecker K, Hacker S. et al . Heat shock proteins 27, 60, 70, 90alpha, and 20S proteasome in on-pump versus off-pump coronary artery bypass graft patients.  Ann Thorac Surg. 2008;  85 80-87
  • 6 Szerafin T, Horvath A, Brunner M. et al . Apoptosis-specific activation markers in on- versus off-pump coronary artery bypass graft (CABG) patients.  Clin Lab. 2006;  52 255-261
  • 7 Franke A, Lante W, Kurig E, Zoller L G, Weinhold C, Markewitz A. Is interferon gamma suppression after cardiac surgery caused by a decreased interleukin-12 synthesis?.  Ann Thorac Surg. 2006;  82 103-109
  • 8 Franke A, Lante W, Markewitz A, Weinhold C. In vitro restoration of post-operatively decreased IFN-gamma levels after cardiac surgery and its effect on pro- and anti-inflammatory mediators.  J Surg Res. 2006;  136 266-272
  • 9 Friedman N D, Russo P L, Bull A L, Richards M J, Kelly H. Validation of coronary artery bypass graft surgical site infection surveillance data from a statewide surveillance system in Australia.  Infect Control Hosp Epidemiol. 2007;  28 812-817
  • 10 Kuroiwa K, Arai T, Okazaki H, Minota S, Tominaga S. Identification of human ST2 protein in the sera of patients with autoimmune diseases.  Biochem Biophys Res Comm. 2001;  284 1104-1108
  • 11 Lohning M, Stroehmann A, Coyle A J. et al . T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function.  Proc Natl Acad Sci USA. 1998;  95 6930-6935
  • 12 Kopp E B, Medzhitov R. The Toll-receptor family and control of innate immunity.  Curr Opin Immunol. 1999;  11 13-18
  • 13 Granowitz E V, Porat R, Mier J W. et al . Intravenous endotoxin suppresses the cytokine response of peripheral blood mononuclear cells of healthy humans.  J Immunol. 1993;  151 1637-1645
  • 14 Nomura F, Akashi S, Sakao Y. et al . Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface Toll-like receptor 4 expression.  J Immunol. 2000;  164 3476-3479
  • 15 Brint E K, Xu D, Liu H. et al . ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance.  Nat Immunol. 2004;  5 373-379
  • 16 Oshikawa K, Yanagisawa K, Tominaga S, Sugiyama Y. ST2 protein induced by inflammatory stimuli can modulate acute lung inflammation.  Biochem Biophys Res Commun. 2002;  299 18-24
  • 17 Hayakawa H, Hayakawa M, Kume A, Tominaga S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation.  J Biol Chem. 2007;  282 26369-26380
  • 18 Sweet M J, Leung B P, Kang D. et al . A novel pathway regulating lipopolysaccharide-induced shock by ST2/T1 via inhibition of Toll-like receptor 4 expression.  J Immunol. 2001;  166 6633-6639
  • 19 Takezako N, Hayakawa M, Hayakawa H. et al . ST2 suppresses IL‐6 production via the inhibition of IkappaB degradation induced by the LPS signal in THP‐1 cells.  Biochem Biophys Res Commun. 2006;  341 425-432
  • 20 Hoetzenecker K, Hacker S, Hoetzenecker W. et al . Cytomegalovirus hyperimmunoglobulin: mechanisms in allo-immune response in vitro.  Eur J Clin Invest. 2007;  37 978-986

1 Szerafin, Niederpold and Mangold share the first authorship.

MD Hendrik Jan Ankersmit

Department of Cardiothoracic Surgery
General Hospital Vienna
Medical University of Vienna

Waehringer Guertel 18/20

1090 Vienna

Austria

Phone: + 43 14 04 00 69 66

Fax: + 43 14 04 00 56 30

Email: hendrik.ankersmit@meduniwien.ac.at